DOI QR코드

DOI QR Code

Temperature Coefficient of Dielectric Constant in CaTiO3-A(B′, B″)O3 Microwave Dielectric Ceramics (A=Ca, La, Li, B′=Al, Fe, Mg, B″=Nb, Ta)

  • Kim, Jeong-Seog (Department of Materials Science and Engineering, Hoseo University) ;
  • Cheon, Chae-Il (Department of Materials Science and Engineering, Hoseo University) ;
  • Park, Chan-Sik (R & D Center, Acetronix Co.) ;
  • Byun, Jae-Dong (Department of Materials Engineering, Korea University)
  • Published : 2003.10.01

Abstract

The dielectric polarizability-related factors contributing to the $\tau$$_{\varepsilon}$ have been analysed in terms of dielectric permittivity $\varepsilon$, Tolerance Factor (TF), and octahedron tilt angles in (1-x)CaTi $O_3$-x[A(B', B″) $O_3$] (A=Ca, La, Li, B'=Al, Fe, Mg, B″=Nb, Ta) and (S $r_{0.2}$C $a_{0.8}$)( $Ti_{1-x}$ Z $r_{x}$) $O_3$. All the compounds have the orthorhombic Pbnm structure except the end members A(B', B″) $O_3$ and the solid solutions of x$\geq$0.8. The additional dipole field effect is suggested as a dominant factor contributing to $\tau$$_{\varepsilon}$ in CaTi $O_3$-based ceramics having relatively large $\varepsilon$, which has not been generally considered in the previous reports dealing with the $\tau$$_{\varepsilon}$. This study has been focussed on delineating the dipole field effect on the $\tau$$_{\varepsilon}$ in comparison to the octahedron tilt effect in CaTi $O_3$-based ceramics.cs..cs.

Keywords

References

  1. Rhys. Rev. v.129 no.4 Temperature Dependence of Dielectric Constant of Cubic Ionic Compounds A.J.Bosman;E.E.Havinga https://doi.org/10.1103/PhysRev.129.1593
  2. J. Appl. Phys. v.74 no.5 Effect of Structural Changes in Complex Perovskites on the Temperature Coefficient of the Relative Permittivity E.L.Colla;I.M.Reaney;N.Setter https://doi.org/10.1063/1.354569
  3. J. Mater. Sci. v.4 Temperature Coefficients of Capacitance of Solids P.J.Harrop https://doi.org/10.1007/BF00550407
  4. Electronic Ceramics High Frequency Ceramic Dielectrics and their Application for Microwave Components W.Wersing;B.C.H.Steele(ed.)
  5. Jpn. J. Appl. Phys. v.30 no.9B Dielectric Properties of Double-oxide Ceramics in the System Ln₂O₃-TiO₂(Ln=La, Nd, Sm) J.Takahashi;K.Kageyama;T.Hayashi https://doi.org/10.1143/JJAP.30.2354
  6. Jpn. J. Appl. Phys. v.33 no.7A Dielectric and Structural Characteristics of Ba-and Sr-based Complex Perovskites as a Function of Tolerance Factor I.M.Reaney;E.L.Colla;N.Setter https://doi.org/10.1143/JJAP.33.3984
  7. Jpn. J. Appl. Phys. v.35 no.1A Strctural Investigations on (BaSr₁$_{-x}$)(Zr$_y$Ti₁$_{-(y+{\delta})}$Ta$_{\delta}$)O₃ Dielectric Resonator Compounds Used for Microwave Application J.Joseph;T.M.Vimala;K.C.J.Raju;V.R.K.Murthy
  8. Phys. Rev. v.78 no.6 The Lorentz Correction in Barium Titanate J.C.Slater https://doi.org/10.1103/PhysRev.78.748
  9. Z. Natur-forsch v.6a Zur Wirksamen Feldstrake im Kubischen Gitter W.Heywang
  10. Jpn. J. Appl. Phys. v.36 no.1A Microwave Dielectric Properties of Certain Simple Alkaline Earth Perovskite Compound as a Function of Tolerance Factor V.Sivasubramanian;V.R.K.Murthy;B.Viswanathan https://doi.org/10.1143/JJAP.36.194
  11. J. Am. Ceram. Soc. v.79 no.10 Microwave Dielectric Properties of CaTiO₃-Ca(AI½Ta½)O₃Ceramics S.Kucheiko;J.W.Choi;H.J.Kim;H.J.Jung https://doi.org/10.1111/j.1151-2916.1996.tb09040.x
  12. Jpn. J. Appl. Phys. v.36 no.1A Effect of ZnO Additive on Microstructure and Microwave Dielectric Properties of CaTi$_{1-x}$(Fe$_{0.5}$Nb$_{0.5}$)xO₃ Ceramics S.Kucheiko;H.J.Kim;S.J.Yoon;H.J.Jung https://doi.org/10.1143/JJAP.36.198
  13. U.S. Patent 5401702 Microwave Dielectric Ceramic Composition K.Y.Kim;J.R.Yun;S.K.Hong;K.H.Chang
  14. Jpn. J. Appl. Phys. v.35 no.9B Dielectric Properties of Ca₁$_{1-x)$Sm$_{2x/3}$TiO₃-Li½Ln½TiO₃ Ceramics K.H.Yoon;Y.H.Chang;W.S.Kim;J.B.Kim;E.S.Kim https://doi.org/10.1143/JJAP.35.5145
  15. Jpn. J. Appl. Phys. v.38 no.9B Crystal Strucrure and Microwave Dielectric Properties of CaTiO₃-(Li½Nd½)TiO₃-(Ln$_{1/3}$Nd$_{1/3}$)TiO₃(Ln=La, Dy) Ceramics J.S.Kim;C.I.Cheon;H.J.Kang;C.H.Lee;K.Y;Kim;S.Nam;J.D.Byun https://doi.org/10.1143/JJAP.38.5633
  16. Jpn. J. Appl. Phys. v.33 no.9B Dielectric Properties Ca-based Complex Perovskite at Microwave Frequencies H.Kagata;J.Kato https://doi.org/10.1143/JJAP.33.5463
  17. J. Mater. Res. v.13 no.5 The Correlation between and the Tolerance Factor in (Sr,Ca)(Ti,Zr)O₃ Microwave Dielectric Ceramics C.I.Cheon;J.S.Kim https://doi.org/10.1557/JMR.1998.0153
  18. School of Physics User's guide to Program DBWS-9411 R.A.Young;A.sakthivel;T.S.Moss;C.O.Paiva-San-tos
  19. Acta. cryst. v.A31 Simple Ways of Determining Perovskite Structures A.M.Glazer
  20. Acta. Crystallogr v.B32 The Structure of Orthorhombic SrZrO₃by Neutron Powder Diffraction A.Ahtee;M.Ahtee;A.M.Glazer;a.W.Hewat
  21. Mater. Lett. v.38 Crystal Structure of La(Mg$_Wfrac{2}{3}$M$_Wfrac{1}{3}$) O₃(M=Nb, Ta) Microwave dielectric Ceramic J.S.Kim;C.I.cheon;H.J>Kang;H.S.Shim;c.H.Lee;S.Nam;J.D.Byun https://doi.org/10.1016/S0167-577X(98)00177-3
  22. J. Kor. Ceram. Soc. v.36 no.2 Analysis of the Crystal Structure and the Relation with the temperature Coefficient in BaORe₂O₃4TiO₂(Re=La, Nd, Y) Microwave Dielectric Ceramics J.S.Kim;H.J.Kang;H.S.Shim;C.H.Lee;C.I.Cheon;T.R.Park
  23. J. Kor. Ceram. Soc. v.38 no.7 Microwave Dielectric Propertics of Ca$_x$Sm$Wfrac{2x}{3}$TiO₃Ceramics E.S.Kim;B.S.Chun;K.S.Bang;J.C.Kim
  24. Jpn. J. Appl. Phys. v.32 Dielectric Properties of Pb-based Perovskite Substituted by Ti for B-site at Microwave Frequencies H.Kanata;J.Kato;K.Nishimoto;T.Inoue https://doi.org/10.1143/JJAP.32.4332
  25. J. Kor. Ceram. Soc. v.38 no.7 Microwave Dielectric Properties of Low Temperature Fired $(Pb_{0.045}CA_{0.55})[Fe_{0.5}Nb_{0.5})_{0.9}Sn_{0.1}]O₃Ceramics with Various Additives E.S.Kim;B.S.Chun;K.S.Bang;J.C.Kim
  26. The Major Ternary Structural Families O.Muller;R.Roy