The Effect of Folate Defficiency on Plasma Cholesterol and Antioxidative System in Ethanol-fed Rats

엽산 결핍이 에탄올을 급여한 흰쥐의 체내 콜레스테롤 함량과 항산화계에 미치는 영향

  • 배민정 (영남대학교 식품영양학과) ;
  • 양경미 (대구한의대학교 식품조리영양학과) ;
  • 민혜선 (한남대학교 식품영양학과) ;
  • 서정숙 (영남대학교 식품영양학과)
  • Published : 2003.10.01

Abstract

Chronic alcoholism is considered a common cause of malnutrition. Especially, micronutrient deficiency may playa critical role in the incidence of alcoholic liver diseases. This study was conducted to investigate the effect of folate deficiency and ethanol consumption on cholesterol metabolism and the antioxidative system in rats. Plasma concentration of total cholesterol was increased by ethanol administration in folate-fed rats. HDL-cholesterol tended to be higher in the folate-fed group, but it was not significant. The plasma and hepatic levels of malondialdehyde were increased after chronic ethanol feeding, but dietary folate depressed the plasma malondialdehyde content of rats. Ethanol or folate feeding did not significantly change alcohol dehydrogenase activity. But folate feeding increased catalase activity in ethanol-fed rats. There was no significant change in superoxide dismutase activity among the experimental groups. Glutathione peroxidase activity tended to decrease by chronic ethanol feeding, but dietary folate did not affectthe glutathione peroxidase activity of chronic ethanol-fed rats. Glutathionine-S-transferase activity was not affected by ethanol feeding or folate deficiency. The plasma and hepatic levels of retinol decreased after chronic ethanol feeding. The hepatic level of retinol significantly decreased in ethanol-fed rats by folate deficiency. The plasma level of $\alpha$-tocopherol tended to be low in the folate deficient group with ethanol feeding, but there was no difference among the experimental groups in the hepatic level of $\alpha$-tocopherol. These results demonstrate that chronic ethanol consumption changes the plasma cholesterol metabolism and antioxidative system of rats, and optimal folate feeding in ethanol-fed rats exerts protective effects to some extent.

본 연구는 만성적인 에탄올 섭취시 엽산 결핍이 체내 콜레스테롤 함량과 항산화계에 미치는 영향을 조사하고자 Sprague-Dawley종 흰쥐에게 총 열량의 36%에 해당하는 에탄올을 함유한 액체식이를 4주간 급여하였다. 본 실험에서 얻은 결과는 다음과 같다. 일일 체중증가량과 사료효율은 알코올 급여군이 각각의 pair-fed군보다 낮았고 엽산 공급의 유무에 따른 영향은 없었다. 총 콜레스테롤 함량은 엽산 결핍과 함께 에탄올을 급여시킨 ED군과 Pair-fed군인 PD군 사이에는 유의적인 차이가 없었으나 엽산과 함께 에탄올을 급여시킨 EF군이 pair-fed군인 PF군보다 유의적으로 높았다. HDL-콜레스테롤 함량과 HDL/총 콜레스테롤 함량은 전 군에서 유의적인 차이를 보이지 않았다. 혈장내 지질과산화물 함량은 엽산 결핍군인 PD와 ED군 모두 높았으며 엽산급여군에서는 에탄올을 급여한 EF군 pair-fed군인 PF군에 비해 유의적인 증가를 보여서 에탄올에 의한 지질과산화물 함량증가에 엽산 공급이 아무런 도움을 주지 못한 것으로 나타났다. 간 마이크로솜 내 지질과산화물 함량 역시 혈장내 지질과산화물 함량과 동일한 경향으로 에탄올 급여로 증가된 지질과산화물 함량에 대하여 엽산이 별다른 효과를 보이지 않았다. ADH 활성화는 전군에서 유의적인 차이가 없었고 catalase 활성도는 엽산을 결핍시킨 PD와 ED군과 에탄올 급여와 함께 엽산을 공급한 EF군이 pair-fed군인 PF군에 비해 유의적으로 높은 활성을 보였다. 간 세포질에서 SOD 활성은 전 군에서 유의적인 차이가 없었고 GSH-Px 활성은 에탄올 급여군이 각각의 pair-fed군에 비하여 유의적으로 낮은 활성을 보였으며 특히 에탄올과 함께 엽산을 공급한 EF군에서 가장 낮은 활성을 나타내었다. 그리고 GST 활성은 전 군에서 유의적인 차이를 보이지 않았다. 혈장내 retinol 함량은 엽산의 공급 유무와 상관없이 에탄올 급여군인 ED와 EF가 각각의 pair-fed군에 비하여 유의적으로 낮은 함량을 보였다. 간조직 내 retinol 함량은 엽산 결핍군에서는 에탄을 급여군인 ED군이 pair-fed군인 PD군에 비하여 유의적으로 낮은 함량을 보였으나 엽산 공급군에서는 에탄올에 의한 retnol 함량 저하에 대하여 엽산이 보호효과를 보였다. 간조직 내 retinyl palmitate 함량 역시 엽산의 공급 유무와 상관없이 에탄올 급여군이 비급여군에 비하여 유의적으로 낮은 함량을 나타내었다. 혈장내 비타민 E 함량은 엽산을 결핍시킨 군 중 에탄올 급여군인 ED군이 pair-fed군인 PD군에 비하여 유의적으로 비타민E 함량이 낮았으며 엽산을 공급시킨 군에서는 에탄올 급여군과 pair-fed군 사이에 유의적인 차이가 없었다. 이상의 결과를 통해서 볼 때 에탄올 급여시 혈장 내 콜레스테롤 함량은 엽산 섭취에 의해 증가되었으나 지질과산화물과 항산화 효소 및 항산화 영양소의 변화에 대하여 엽산결핍이 에탄올 섭취에 의해 변화된 항산화계의 손상을 더욱 가중시키는 경향이 있는 것으로 나타났다.

Keywords

References

  1. Ann NY Acad Sci v.669 Plasma folate adequacy as determined by homocysteine level Lewis,C.A.;Pancharuntti,N.;Sauberlich,H.E. https://doi.org/10.1111/j.1749-6632.1992.tb17123.x
  2. Am J Clin Nutr v.58 Supplemental folic acid Zimmernmann,M.B.;Shane,B.
  3. J Kor Soc Food Sci Nutr v.27 Biochemical evaluation of nutritional status of vitamins and minerals in patients with alcoholic liver disease Koo,B.K.;Chung,J.M.;Lee,H.S.
  4. Biochem J v.257 Cleavage of folates during ethanol metabolism Shaw,S.;Jayatilleke,E.;Herbert,V.;Colman,N.
  5. Health and social welfare review Korean Institute for Health and Social affairs
  6. J East Society of Dietary Life v.5 no.3 Hepatotoxicity induced by ethanol consumptionand nutritional effects Seo,J.S.
  7. Am Soc Nutr Sci v.132 Metabolic interactions of alcohol and folate Halsted,C.H.;Villanueva,J.A.;Devlin,A.M.;Chandler,C.J.
  8. Proc Natl Acad Sci v.99 Floage deficiency disturbs hepatic methionine metabolism and promotes liver injury in the ethanol-fed micropig Halsted,C.H.;Villanueva,J.A.;Devlin,A.M.;Niemel,O.;Parkkila,S.;Garrow,T.A.;Wallock,L.M.;Shipenaga,M.K.;Melnyk,S.;James,S.J. https://doi.org/10.1073/pnas.112336399
  9. J Nutr v.131 Folate depletion and elevated plasma homocysteine promote oxidative stress in rat livers Huang,R.-FS.;Hsu,Y.C.;Lin,H.L.;Yang,F.L.
  10. Am J Clin Nutr v.33 Folate deficiency in alcoholism Halsted,C.H.
  11. J Am Med Assoc v.274 A quantitative assessment of plasma homocysteine as a risk factor for vascular disease Bushey,C.J.;Beresford,S.A.A.;Omen,G.S.;Motulsky,A.G.A. https://doi.org/10.1001/jama.274.13.1049
  12. Lancet v.354 Homocysteine and vascular disease Hankey,G.J.;Eikelboom,J.W. https://doi.org/10.1016/S0140-6736(98)11058-9
  13. Ann Nutr Metab v.41 Folate in preventive medicine : A new role in cardiovascular disease, neural tube defects and cancer Pietrzik,K.;Bronstrup,A. https://doi.org/10.1159/000178004
  14. J Nutr v.126 Relationship between plasma homocysteine, vitamin status and extracranial carotid-artery stenosis in the Framingham study population Selhub,J.;Jacques,P.F.;Botsom,A.G.;D'agostino,R.B.;Wilson,P.W.F.;Belanger,A.J.;O'leary,D.H.;Wolf,P.A.;Rush,D.;Schaefer,E.J.;Rosenberg,I.H.
  15. Toxicology v.123 The cell-damaging effects of low amounts of homocysteine and coper ions in human cell line cultures are caused by oxidative stress Hultberg,B.;Andersson,A.;Isaksson,A. https://doi.org/10.1016/S0300-483X(97)00105-4
  16. J Clin Invest v.98 The oxidant stress of hyperhomocyst(e) inemia Loscalzo,J. https://doi.org/10.1172/JCI118776
  17. Free Radic Biol Med v.14 Homocysteine metabolism and the oxidative modification of proteins and lipids Olszewski,A.J.;McCully,K. https://doi.org/10.1016/0891-5849(93)90151-J
  18. Atherosclerosis v.122 Homocysteine mediated endothelial cell toxicity and its amelioration Blundell,G.;Jones,B.G.;Rose,F.A.;Tudball,N. https://doi.org/10.1016/0021-9150(95)05730-7
  19. Atherosclerosis v.105 Lipid peroxidation and homocysteine induced toxicity Jones,B.G.;Rose,F.A.;Tudball,N. https://doi.org/10.1016/0021-9150(94)90046-9
  20. J Nutr v.124 Homocysteine increases as folate decreases in plasma of healthy men during short-term dietary folate and methyl group restriction Jacob,R.A.;Wu,M.M.;Henning,S.M.;Swendseid,M.E.
  21. Br J Surg v.82 Homocysteine and vascular disease Berwanger,C.S.;Jeremy,J.Y.;Stansby,G. https://doi.org/10.1002/bjs.1800820604
  22. J Fam Pract v.44 The role of folic acid in deficiency states and prevention of disese Swain,R.A.;Clair,L.S.
  23. Exp Res v.10 The feeding of ethanol in liquid diets Lieber,C.S.;Decarli,L.M. https://doi.org/10.1111/j.1530-0277.1986.tb05140.x
  24. Anal Biochem v.95 Assay for lipid peroxides in animal tissuies by thiobarbituric acid reaction Ohkawa,H.;Ohishi,N.;Yagi,K. https://doi.org/10.1016/0003-2697(79)90738-3
  25. Biochem Biophys v.379 Different from of rat liver aldehyde dehydrogenase and their subcellular distribution Koivula,T.;Koivusalo,M.
  26. Methods of enzymatic analysis(2nd edition) Catalase Aebi,H.
  27. J Lab Clin Med v.85 The estimation of red cell superoxide dismutase activity Winterboum,C.C.;Hawkins,R.E.;Brain,M.;Carrell,R.W.
  28. Lab Clin Med v.70 Studies on quantitative an qualitative characterization of erythrocyte glutathionine peroxidase Paglia,D.E.;Valentine,W.N.
  29. Biochem Biophysi Res Com v.71 Glutathione peroxidase activity in selecnium-deficient rat liver Lawrence,R.A.;Burk,R.F. https://doi.org/10.1016/0006-291X(76)90747-6
  30. J Bio Chem v.249 The first enzymatic step mercapturic acid formation Habig,W.H.;Pbst,M.J.;Jabby,W.B.
  31. J Biol Chem v.193 Proteinmeasurement with the folin phenol reagent Lowry,O.H.;Rosebrugh,N.J.;Lewis,F.A.;Raxdall,R.J.
  32. J Clin Nutr v.32 Simultaneus determination of tocopherol and retinol in plasma or red cells by high presure liquid chromatography Bieri,J.G.;Tolliver,T.J.;Catilgnani,G.L.
  33. J Chromato v.309 Gradient reversed-phased high-performance liquid chromatographic seperation of naturally occuring retinoids Furr,H.C.;Amedee-Manesme,O.;Olson,J.A. https://doi.org/10.1016/0378-4347(84)80037-7
  34. J Nutr v.118 Rat models for chronic alcohol consumption Rao,G.A.;Sankaran,H.;Larkin,E.C.
  35. Metabolism v.36 Effects of moderate alcohol consumption on platelet aggregation fivrinolysis and blood lipids Pikaar,N.A.;Wedel,M.;Vander,Beek,E.J.;Van,D.W.;Kempen,H.J.;Kluft,C.;Ockhuizen,T.;Hermus,R.J. https://doi.org/10.1016/0026-0495(87)90163-6
  36. Am J Clin v.4 Perspective-Do alcohol calories count? Lieber,C.S.
  37. Kor J Nutr v.31 Effects of dietary folate intake on plasma and tissue folate concentration in rats Chang,N.S.;Kim,Y.S.
  38. Medical and nutritional complications of alcoholism: mechanism and management Lieber,C.S.
  39. Am J Med v.62 High density lipoprotein as a protective factor against coronary heart disease: the Framingham study Gorden,T.;Castell,U.P.;Hortland,M.C.;Kannel,W.B.;Dawber,T.R. https://doi.org/10.1016/0002-9343(77)90874-9
  40. Chang NS, Kim KN, Kim YS, Seo JB, Kwon OO. Effects of alcohol administration and dietary folate on plasma homocysteine and liver histopathology. Kor J Nutr 31: 1121-1129, 1998
  41. Kor J Nutr v.31 Effects of alcohol administration and dietary folate on plasma homocy-steine and liver histopathology Chang,N.S.;Kim,K.N.;Kim,Y.S.;Seo,J.B.;Kwon,O.O.
  42. Gastroenterology v.106 Alcohol and the liver; 1994 update Liber,C.S.
  43. Free Rad Biol Med v.12 Implication of free radical mechanism in ethanol-induced cellular injury Nordmann,R.;Ribiere,C.;Rouach,H. https://doi.org/10.1016/0891-5849(92)90030-K
  44. Free Rad Biol $ Med v.7 Role of lipid peroxidation and oxidative stress in alcohol toxicity Cederbaum,A.I. https://doi.org/10.1016/0891-5849(89)90029-4
  45. Int J Biochem v.20 Effect of chronic ethanol treatment under partial catalase inhibition on the activity of enzymes related to peroxide metabolism in rat liver and heart Antonenkov,V.D.;Panchenko,L.F. https://doi.org/10.1016/0020-711X(88)90071-7
  46. Gastroenterology v.43 Alterations of liver alcohol dehydrogenase and other hepatic enzymes in alcoholic cirrhoisis Figueroa,R.B.;Klotz,A.P.
  47. Gastroenterology v.62 Rate of ethanol clearance and activities the ethanol-oxidizing enzymes in chronic alcohol patients Mezy,E.;Tobon,F.
  48. Am J Clin Nutr v.11 Alterations of alcohol dehydrogenase and other hepatic enzymes following oral alcohol intoxication Figueroa,R.B.;Klotz,A.P.
  49. Hepatology v.162 Ethanol oxidation by hepatic microsomes Lieber,C.S.;Decarli,L.M.
  50. Int J Biochem v.20 Effect of chronic ethanol treatment under partial catalase inhibition on the activity of enzymes related to metabolism in rat liver and heart Antonenkov,V.D.;Panchenko,L.F. https://doi.org/10.1016/0020-711X(88)90071-7
  51. Kor J Nutr v.29 Effect chronic ethanol administration on oxidative stress and cellualr defense system in rat myocardium Oh,S.I.;Park,J.S.;Park,Y.C.;Kim,C.I.;Park,S.C.
  52. Am J Pathol v.96 Increased myocardial catalase in rats fed alcohol Fashimi,H.D.;Kino,L.H.;Thorp,K.;Albelman,W.H.
  53. Biochem Pharmacol v.44 Effects of chronic ethanol administration on free radical defense in rat myocardium Ribiere,C.;Hininger,I.;Rouach,H.;Nordmann,R. https://doi.org/10.1016/0006-2952(92)90463-S
  54. Alcohol & Alcoholism v.20 Discrepancy between the different subcelluar activities of rat liver catalase and superoxide dismutases in response to acute ethanol administration Rieber,C.;Sinceur,J.;Nordmann,J.A.;Nordmann,R.
  55. Drug alcohol Depend v.22 Antioxidant and free radical scavenging enzymes in chronically ethanol-consuming rats; cont-roversy over hepatic lipid peroxidation Nadkarni,G.D.;D'Souza,N.B. https://doi.org/10.1016/0376-8716(88)90051-8
  56. Jap Soci Patho v.41 Glutathione peroxidase and glutathione-S-trans-ferase, class α, in rat intestine Tauchi,K.;Tautsumi,Y.;Tsukamoto,H.;Hasegawa,H.;Yoshimura,S.;Watanaba,K.
  57. Free Rad Biol Med v.7 Effect of ethanol in vivo on enzymes which detoxify oxygen free radicals Schisler,N.J.;Singh,S.M. https://doi.org/10.1016/0891-5849(89)90002-6
  58. Biochem Pharmacol v.35 Increased hepatic efflux of glutathione after chronic ethanol feeding Pierson,J.L.;Mitchell,M.C. https://doi.org/10.1016/0006-2952(86)90121-8
  59. J Nutr v.111 Hepatic vitamin A depletion after chromic ethanol consumption in baboons and rats Sato,M.;Lieber,C.S.
  60. Vitamin A at pharmacologic dose ameliorates the membrane lipid peroxidation injury and testicular atrophy that occurs with chronic alcohol feeding in rats Rosenblum,E.R.;Gavaler,J.S.;Van,Thiel,D.H.
  61. Hepatology v.8 Effects of vitamin A and ethanol on liver plasma membrane fluidity Kim,C.I.;Leo,M.A.;Lowe,N.;Lieber,C.S. https://doi.org/10.1002/hep.1840080405
  62. J Nutr v.121 Data supporting supplementation of humans with vitamin E Horwitt,M.K.
  63. Skol RJ. The coming age of α-tocopherol. Hepatology 9: 649-654, 1989 https://doi.org/10.1002/hep.1840090422
  64. Lipids v.27 Studies on the transfer of tocopherol between lipoproteins Traber,M.G.;Lane,J.C.;Lagmay,N.R.;Kayden,H.J. https://doi.org/10.1007/BF02536020
  65. Hepatology v.9 The coming age of α-tocopherol Skol,R.J. https://doi.org/10.1002/hep.1840090422