DOI QR코드

DOI QR Code

혈전 분해효소 생산균의 탐색 및 효소생산 최적조건의 조사

Screening of Fibrinolytic Enzyme Producing from Microorganisms and Optimum Conditions of Enzyme Production

  • 발행 : 2003.10.01

초록

전통식품(고추장, 된장, 쌈장, 젓갈류, 김치)으로부터 혈전 용해능이 있는 미생물을 분리한 후 그 중 fibrin용해능이 가장 우수한 균주 KJ-23을 최종 선발하였다. 최종 선별한 균주 KJ-23을 Microbial identification system(MIS)의 Sherlock 95 program을 이용하여 동정한 결과 Bacillus brevis KJ-23으로 동정하였다. Bacillus brevis KJ-23균주의 최대혈전용해 생산을 위한 최적배지화 조건을 검토한 결과 nutrient broth, D-ribose 0.5%, malt extract 0.5%, $K_2$HPO$_4$ 0.3% 첨가시 최고의 활성을 보였으며, 금속염을 첨가했을 경우에는 오히려 활성이 감소하는 경향을 보여 금속원은 최적 배지화 조건에서 첨가하지 않았다. 또한 pH7.0, 3$0^{\circ}C$에서 진탕배양했을 경우 최대활성을 보였으며, 시간별 경시효과에서는 24시간에서 혈전용해능이 최대를 나타내었다.

A strain of potential producer of fibrinolytic enzyme was isolated from Korean fermented food. The isolated bacterium was identified and named as Bacillus brevis KJ-23. The optimal condition of the medium for the production of fibrinolytic enzyme from Bacillus brevis KJ-23 was nutrient broth with 0.5% D-ribose, 0.5% malt extract and 0.3% $K_2$HPO$_4$. The optimum pH, temperature and fermentation time for the enzyme production were pH 7.0, 3$0^{\circ}C$ and 24 hr, respectively.

키워드

참고문헌

  1. Noh KA, Kim DH, Choi NS, Kim SH. 1999. Isolation of fibrinolytic enzyme producing strains from kimchi. Korean J Food Sci Technol 31: 219-223.
  2. Sasaki K, Moriyama S, SumiH, Toki N, Robbins KC. 1985. The transport of 125I-labeled human high molecular weight urokinase across the intestinal tract in a dog model with stimulation of synthesis and/or release of plasminogen activators. Blood 66: 67-75.
  3. Wun TC, Schleuning WD, Reich E. 1982. Isolation and characterization of urokinase from human plasma. Biol Chem 257: 3276-3283.
  4. Lijnen H, Van Hoef R, Coolen D. 1992. Interaction of streptokinase with different molecular forms of plasminogen. Biochem Biophys, ACTA 144: 1118-1122.
  5. Pennica DW. Holmes E, Kohr WJ, HarkinsRN, VeharGA, Ward CA, Bennett WF, Yelberton E, Seeburg PH, Heyneker HL, Goeddel DV, Collen D. 1983. Cloning and expression of human tissue-type plasminogen activator cDNA in E. coli. Nature 301: 214-221. https://doi.org/10.1038/301214a0
  6. Mihara H, Sumi H, Yontta T, Mizumoto H, Ikeda R, Seiki M, Maruyama M. 1991. A novel fibrinolytic enzyme extracted from the earthworm, Lumbricus rubellus. Jap J Physiology 41: 461-472. https://doi.org/10.2170/jjphysiol.41.461
  7. Nobuyoshi N, Mihara H, Sumi H. 1993. Characterization of potent fibrinolytic enzymes in earthworm, Lumbricus rubellus. Biosci Biotech Biochem 57: 1726-1730. https://doi.org/10.1271/bbb.57.1726
  8. Sumi H, Nakajima N, Mihara H. 1993. A very stable and potent fibrinolytic enzyme found in earthworm. Lumbricus rubellus, Comp Biochem Physiol 106: 763-766.
  9. Fujita M, Nomura K, Hong K, Ito Y, Asada A, Nishimuro S. 1993. Purification and characterization of a strong fibrinolytic enzyme (nattokinase) in the vegetable cheese Natto, a popular soybean fermented food in Japan. Biochem Biophys Res Comm 197: 1340-1347. https://doi.org/10.1006/bbrc.1993.2624
  10. Sumi H, Hamade H, Tsushima H, Mihara H, Muraki H. 1987. A novel fibrinolytic enzyme (nattokinase) in the vegetable cheese Natto, a typical and popular soybean fermented food in Japaneese diet. Experientia 43: 1110-1111. https://doi.org/10.1007/BF01956052
  11. Jang YK, Yang OS, Kang JO, Kong IS, Kim JO. 1995. Fibrinolysis of fermented kimchi. Korean J Life Science 5: 203-210.
  12. Choi WA, Lee JO, Lee KH, Park SH. 1998. Effects of environmental and nutritional conditions on fibrinolytic enzyme production from Bacillus subtilis BK-17 in flask culture. Korean J Biotechnol Bioeng 13: 491-496.
  13. Chung YJ. 1999. Isolation and characterization of a bacterium with a fibrinolytic activity. Korean J Biotechnol Bioeng 14: 103-108.
  14. Choi NS, Seo SY, Kim SH. 1999. Screening of mushrooms having fibrinolytic activity. Korean J Food Sci Technol 131: 553-557.
  15. Heo S, Lee SK, Joo HK. 1998. Isolation and identification of fibrionlytic enzyme producing strain from traditional food. Agricultural Chemistry and Biotechnology 41: 119-124.
  16. Jang SA, Kim MH, Lee MS, Lee MJ, Ji OH, Oh TK, Sohn CB. 1999. Isolation and identification of fibrinolytic enzyme producing strains from shrimp Jeot-Gal, a tiny salted shrimps, and medium optimization for enzyme production. Korean J Food Sci Technol 131: 1648-1653.
  17. Kim YT, Kim OK, Oh HI. 1995. Screening and identification of the fibrinolytic bacterial strain from chungkook-jang. Kor J Appl Microbiol Biotechnol 23: 1-5.
  18. Astrup T, Mullertz S. 1952. The fibrin plate method for estimating fibrinolytic activity. Archs Biochem Biophys 40: 346-347. https://doi.org/10.1016/0003-9861(52)90121-5
  19. Chang YH, Kim JK, Kim HJ, Yoon JH, Kim WY, Choi, YW Lee WJ, Kim YB, Park YH. 1999. Characteristics of Lactobacillus reuterii BSA-131 isolated from swine intestine. Kor J Appl Microbiol Biotecnol 27: 23-27.
  20. MIDI, Inc. Operating manual Ver. 6. Sherlock Microbial Identification System.
  21. Lee SK, Heo S, Bae DH, Choi KH. 1998. Medium optimization for fibrinolytic enzyme production by Bacillus subtilis KCK-7 isolated from Korean traditional chungkookjang. Kor J Appl Microbiol Biotechnol 26: 226-231

피인용 문헌

  1. Isolation of Fibrinolytic Enzyme and β-Glucosidase Producing Strains from Doenjang and Optimum Conditions of Enzyme Production vol.33, pp.2, 2004, https://doi.org/10.3746/jkfn.2004.33.2.439