DOI QR코드

DOI QR Code

Effects of Peonia Seed Extracts and Resveratrol on Lipid Metabolism in Rats Fed High Cholesterol Diets

작약(Paeonia lactiflora Pall.)씨 추출물과 Resveratrol이 흰쥐 체내 지질 상태에 미치는 영향

  • 서상희 (대구가톨릭대학교 식품영양학과) ;
  • 이향림 (대구가톨릭대학교 식품영양학과) ;
  • 이순재 (대구가톨릭대학교 식품영양학과) ;
  • 최상원 (대구가톨릭대학교 식품영양학과) ;
  • 조성희 (대구가톨릭대학교 식품영양학과)
  • Published : 2003.10.01

Abstract

To study the effects of substances in paeonia seeds (Paeonia lactiflora Pall.) on lipid metabolism, crude methanol extract and secondary ether-soluble fraction out of defatted methanol extract and trans-resveratrol were prepared from the seeds and added to 0.5% (w/w) cholesterol diets for rats. Male Sprague-Dawley rats weighing 120$\pm$11 g were divided into six experimental groups: control group with no extra supplement, 0.1% (MP1) and 0.2% methanol extract (MP2) supplemented groups, 0.05% (EP1) and 0.1% ether-soluble fraction (EP2) supplemented groups and 0.02% resveratrol supplemented group. Experimental diets were fed ad libitum to the rats for 3 weeks. Body weight gains and food efficiencies were not different among the six experimental groups. Relative liver weights were lower in EP2 group compared to those in control group, but serum GOT and GPT levels of paeonia seed groups including trans-resveratrol group were not different from those of the control group. Serum total cholesterol levels reduced in EP2 and resveratrol groups but HDL-/total cholesterol ratios significantly increased in the four paeonia groups except EP1 group compared with the control group and serum triglyceride level lowered only in EP2 group than that of the control. However, liver cholesterol levels lowered in the five paeonia groups but triglyceride level lowered in MP2, EP1, EP2 groups than that of the control group. Fecal cholesterol excretion significantly increased in MP2, EP1, and EP2 groups than that of the control group, but bile acid excretions were not changed except that a reduction in EP2 group. These results suggest that paeonia seeds contain substances improving serum lipid status mostly via HDL pathway and resveratrol as monomer is one of the effective components but others including resveratrol oligmer are involved in the lipid improving effect.

본 연구는 작약(Paeonia lactiflora Pall.)씨 추출물 및 작약씨에서 분리한 resveratrol의 체내 지질대사에 미치는 영향을 조사하기 위하여 시행되었다. 고콜레스테롤 식이에 작약씨 메탄올 추출물을 0.1%(MP1)와 0.2%(MP2) 첨가시키거나 메탄올 추출물을 탈지시킨 후 에테르로 분획한 에테르가용성 추출물을 0.05%(EP1), 0.1%(EP2), 작약씨 resveratrol은 0.02%씩 각각 첨가시킨 식이를 조제하여 초기체중 120$\pm$11g의 Sprague-Dawley종 숫쥐에게 섭취시켜 3주간 사육하였고, 시험물질을 첨가하지 않은 식이를 섭취시킨 control군과 비교 조사하였다. 사육 후 EP2군은 나머지 5군에 비하여 체중증가량과 식이효율이 떨어지는 경향이었으나 나머지 5군에서 차이가 없었다. 그러나 간 무게(g/100g 체중)는 EP2군이 대조군에 비하여 낮았고 혈청 GOT와 GPT도 5개의 작약군이 대조군에 비하여 차이가 없었다. 혈청 총 콜레스테롤은 EP2군과 resveratrol군이 control군에 비하여 유의하게 낮았고, 다른 군들은 차이가 없었으나 HDL-cholesterol은 5군의 작약군이 대부분이 높았으며 HDL-/총 콜레스테롤의 비율은 EP1군을 제외한 나머지 4군의 작약군에서 대조군에 비하여 모두 유의하게 높았다. 그러나 혈청중성지방은 EP2군만이 대조군에 비하여 낮았다. 간조직 콜레스테롤 함량은 5개의 작약군이 모두, 중성지방은 MP2군과 EP1, EP2군이 대조군에 비하여 유의하게 낮았다. 분변으로의 콜레스테롤 배설은 MP2, EP1 및 EP2군에서 대조군에 비하여 높았으나 담즙산 배설은 차이가 없었으며 EP2군에서는 오히려 낮았다. 본 연구의 결과로서 작약씨에는 체내 총 콜레스테롤 및 중성지방의 상태를 저하시키는 물질이 있으며 이러한 변화는 HDL-콜레스테롤 대사를 활성화시켜 분변으로의 콜레스테롤 배설을 증가시키는 것이 주요기전으로 판단된다. 이 역할을 하는 성분으로 작약씨에 존재하는 monomer형태의 resveratrol이 일익을 담당하지만 추출물속에 함유된 resveratrol oligomer 및 비 resveratrol 화합물도 작용하였으리라고 사료되어 이에 대한 확인이 필요하다. 작약씨에 함유된 물질들의 지질대사 개선효과는 이미 보고된 항산화기능과 함께 동맥경화 예방에 유효할 것으로 기대되며 기능성 식품에 활용에 대한 연구가 필요하다

Keywords

References

  1. Kang BS. 1992. Bonchohak. Surim press, Seoul. p 581-583.
  2. Shibata S, Nakahara M, Aimi N. 1963. Studies on the constituents of Japanese and Chinese paeony crude drugs. IX. Paeoniflorin, a glucoside of Chinese paeony root (2). Chem Pharm Bull 11: 379-381. https://doi.org/10.1248/cpb.11.379
  3. Kanada M, Iitakawa Y, Shibata S. 1972. Chemical studies on the oriental plant drugs. X. The absolute structures of paeoniflorin, albiflorin, oxypaeonilflorin and benzolylpaeonylflorin isolated from Chinese paeony root. Tetrahedron 28: 4309-4317. https://doi.org/10.1016/S0040-4020(01)88953-5
  4. Sung WY, Yoon GR, Jang SM. 2000. Comparison of effective constituents of Korean paeony roots (Paeoniae radix) cultivated in different regions. Kor Soc Postharvest Sci & Technol 7: 297-301.
  5. Ro HS, Ko WK, Yang HO, Park KK, Cho YH, Lee YE, Park HS. 1999. Isolation of antihyperlipidemic substances from methanol extract of Paeoniae radix. J Kor Pharm Sci 29: 55-60.
  6. Kim HJ, Chung SK, Choi SW. 1999. Lipoxygenase inhibitiors from Paeonia lactiflora seed. J Food Sci Nutr 4: 163-166.
  7. Kim HJ, Chang EJ, Cho SH, Chung SK, Park HD, Choi SW. 2002. Antioxidative activity of resveratrol and its derivatives isolated from seeds of Paeonia lactiflora. Biosci Biotechnol Biochem 66: 1990-1993. https://doi.org/10.1271/bbb.66.1990
  8. Pattichis K, Louca LL, Jarman J, Sander M, Glover V. 1993. Inhibition of human LDL oxidation by resveratrol. Lancet 341: 1103-1104.
  9. Bertelli AAE, Giovannini L, Giannessi D. 1995. Antiplatelet activity of synthetic and natural resveratrol in red wine. Int J Tissue React 17: 1-3.
  10. Ferrero ME, Bertelli AAE, Fulgenzi A, Pellagatta F, Corsi MM, Bonfrate M, Ferrara F, De Caterina R, Giovannini L, Bertelli A. 1998. Activity in vitro of resveratrol on granulocyte and monocyte adhesion to endothelium. Am J Clin Nutr 68: 1208-1214.
  11. Jang M, Cai L, Udeani GO. 1997. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275: 218-220. https://doi.org/10.1126/science.275.5297.218
  12. Cheong HO, Ryu SY, Kim KM. 1999. Anti-allergic action of resveratrol and related hydroxy stilbenes. Planta Med 65: 266-268. https://doi.org/10.1055/s-2006-960773
  13. Gehm BD, McAndrews JM, Chien P-Y, Jameson JL. 1997. Resveratrol, a polyphenolic compound found in grapes and wine, is an agonist for the estrogen receptor. Proc Natl Acad Sci 94: 14138-14143. https://doi.org/10.1073/pnas.94.25.14138
  14. Miura D, Miura Y, Yagasaki K. 2003. Hypolipidemic action of dietary resveratrol, a phytoalexin in grapes and red wine, in hepatoma-bearing rats. Life Sci 73: 1393-400. https://doi.org/10.1016/S0024-3205(03)00469-7
  15. Pal S, Ho N, Santos C, Dubois P, Mamo J, Croft K, Allister E. 2003. Red wine polyphenolics increase LDL receptor ex-pression and activity and suppress the secretion of ApoB100 from human HepG2 cells. J Nutr 133: 700-706.
  16. Reeves PG, Nielsen FH, Fahey GC Jr. 1993. AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123: 1939-1951.
  17. Folch J, Lees M, Sloane-Stanley GH. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226: 497-509.
  18. Sale FO, Marchesini S, Fishman PH, Berra B. 1984. A sensitive enzymatic assay for determination of cholesterol in lipid extracts. Anal Biochem 142: 347-350. https://doi.org/10.1016/0003-2697(84)90475-5
  19. Crowell MJ, Macdonald IA. 1980. Enzymatic determination of 3 $\alpha$-, 7$\alpha$-, and 12-hydroxyl groups of fecal bile salts. Clin Chem 26: 1298-1300.
  20. Bermyer HM. 1995. Methods of enzymatic analysis verlag chemic. Academic Press, Weinheim. p 20-28.
  21. Sotheeswaran S, Pasupathy V. 1993. Distribution of resvertrol oligomers in plants. Phytochem 32: 1083-1092. https://doi.org/10.1016/S0031-9422(00)95070-2
  22. Pryce RJ, Langcake P. 1977. $\alpha$-Viniferin; an antifugal resveratrol trimer from gapevines. Phytochem 16: 1452-1454. https://doi.org/10.1016/S0031-9422(00)88809-3
  23. Kitanaka S, Ikezawa T, Yasukawa K, Yamanouchi S, Takido M, Sung HK, Kim IH. 1990. (+)-$\alpha$-Viniferin, an anti-inflammatory compound from Caragana chamlagu root. Chem Pharm Bull 38: 432-435. https://doi.org/10.1248/cpb.38.432
  24. Lamon-Fava S. 2002. High-density lipoprotein: effects of alcohol, estrogen and phytoestrogens. Nutr Rev 60: 1-7.
  25. Cho SH, Choi SW, Choi Y, Lee WJ. 2001. Effects of defatted safflower and perilla seed powders on lipid metabolism in ovariectomized female rats fed high cholesterol diets. J Korean Soc Food Sci Nutr 30: 112-118
  26. Cho SH, Jung SE, Lee HK, Ha TY. 1999. Effects of methanol extract of prosomillet on cholesterol and fatty acid metabolism in rat. J Food Sci Nutr 3: 188-192.
  27. Kozarsky KF, Donahee MH, Rigott A, Iqbal SN, Edelman ER, Krieger M. 1997. Overexpression of the HDL receptor SR-B1 alters plasma HDL and bile cholesterol levels. Nature 387: 414-418. https://doi.org/10.1038/387414a0
  28. Bok SH, Lee S-H, Park YB, Bae KH, Son KH, Jeong TS, Choi MS. 1999. Plasma and hepatic cholesterol and hepatic acitivity of 3-hydroxy-3-methylglutaryl CoA reductase and acyl CoA-cholesterol transferase are lower in rat fed citrus peel extract or a mixture of citrus bioflavonoids. J Nutr 129: 1182-1185.
  29. Lee JM, Choi SW, Cho SH, Rhee SJ. 2003. Effects of Paeonia lactiflora Pall. seeds on antioxidative system and lipid peroxidation of liver in rats fed high cholesterol diets. Korean J Nutr 36 (in press).

Cited by

  1. Total Polyphenol Content and Antioxidative Activity of Wild Grape (Vitis coignetiae) Extracts Depending on Ethanol Concentrations vol.36, pp.12, 2007, https://doi.org/10.3746/jkfn.2007.36.12.1491
  2. Effects of Water Extracts of Red Pepper Seeds Powder on Antioxidative Enzyme Activities and Oxidative Damage in Rats Fed High-Fat and High-Cholesterol Diets vol.44, pp.4, 2011, https://doi.org/10.4163/kjn.2011.44.4.284
  3. Effects of the purified extracts fromLycii Cortex Radicisand ginger on lipid statusand serum cytokine levels in rats fed high fat diet vol.45, pp.5, 2012, https://doi.org/10.4163/kjn.2012.45.5.411
  4. Effect of Radish Leaves Powder on the Gastrointestinal Function and Fecal Triglyceride, and Sterol Excretion in Rats Fed a Hypercholesterolemic Diet vol.37, pp.10, 2008, https://doi.org/10.3746/jkfn.2008.37.10.1258
  5. 고추씨 에탄올 추출물이 콜레스테롤 흡착능 및 UDP-glucuronyl transferase 활성에 미치는 영향 vol.21, pp.6, 2011, https://doi.org/10.5352/jls.2011.21.6.829
  6. 약용식물 5종의 용매별 추출물 및 조성물의 생리활성 vol.28, pp.3, 2003, https://doi.org/10.5352/jls.2018.28.3.320