DOI QR코드

DOI QR Code

Bioactive Functions of Detoxified Puffer Liver Oil

제독처리한 복어 간유의 생리활성

  • 최종원 (경성대학교 약학대학 약학과) ;
  • 김나영 (동아대학교 식품영양학과) ;
  • 김동수 (경성대학교 식품공학과)
  • Published : 2003.10.01

Abstract

In this study, we investigated the effects of detoxified puffer liver (PL) oil on fatigue, hepatotoxicity and hyperlipidemia. There are no toxicities in both raw and purified PL oil. The test of swimming time was extended in detoxified PL oil pretreated group compared to the non-treated group. When rats treated with PL oil, the hepatic injuries induced by carbon tetrachloride or DL-galactosamine were reduced. The increased serum triglyceride and total cholesterol by poloxamer-407 were lowered by treating with PL oil remarkably. Also the bleeding time of hyperlipidemic animals was extended and plasma clotting time was delayed by PL oil.

인류는 질병에 대한 예방 및 치료에 주로 합성 의약품을 사용하여 왔으나 근래에 이르러 여러 가지 합성 의약품의 부작용 또는 독성이 밝혀짐에 따라 세계적으로 천연자원으로부터의 의약품 개발이 활발히 추진되고 있다. 한편, 우리나라를 위시한 동양에서는 오랜 시일을 통하여 많은 식물을 치료제로 사용하여 왔으나 약화학적 및 약리학적 검토 자료는 지금에 와서 많이 도출되고 있으며 다양한 연구가 이루어지고 있는 실정이다. 본 연구에서는 해양생물로부터 생리활성을 검색할 목적으로 검은 밀복으로부터 제독처리하여 추출, 정제한 검은 밀복 간유를 대상으로 항피로효과, 간기능에 미치는 영향 및 poloxamer-407로 유도되는 고지혈증에 대한 효과를 검색한 결과, 다음과 같은 결론을 얻었다. 첫째, 식품위생학적 안전성 여부를 조사하기 위하여 검은밀복 간유의 정제품을 mouse assay로 그 잔류 독성을 조사한 결과 모두 무독하였다. 둘째, 생쥐를 유영하게 하여 사망하는 시간을 측정하여 본 결과 정상 생쥐에서는 사망시간보다 복어간유를 용량별로 2주일간 경구투여하였을때 사망 시간은 용량 의존적으로 증가되었다. 셋째, 간장해의 유발 약물로 사염화탄소 및 D-galactosamine(GaIN)을 사용하여 복어로부터 추출한 복어간유를 투여한 결과 사염화탄소 및 GaIN을 투여하였을 때 혈중 AST, ALT 및 SDH의 활성이 정상군에 비하여 현저히 증가되던 것이 복어간유의 전처리로 현저히 억제되었다. 넷째, 혈청 중 중성지방 및 total cholesterol의 함량은 정상군에 비하여 poloxamer-407의 투여로 증가되던 것이 복어간유를 용량별로 투여함으로써 현저히 감소되었다. 한편 poloxamer-407로 유도된 고지혈증의 실험동물의 bleeding time이 복어간유의 투여로 연장되었으며 plasma clotting time도 증가되었다.

Keywords

References

  1. Formo MW, Jungermann E, Norris FA, Sonntag NO. 1979. Components of nutritional significance. In Bailey's industrial oil and fat products. 4th ed. John Wiley & Sons, New York. Vol 1, p 79-81.
  2. Hennekens CH, Buring JE, Mayrent SL. 1990. Clinical and epidemiological data on the effects of fish oil in cardiovascular disease. In Omega-3 fatty acids in health and disease. Marcel Deckker, New York. p 71-85.
  3. Shimizu CT, Matsui H, Sato H. 1984. Pufferfish toxin. Mar Sci Mon 16: 560-565.
  4. Ministry of Health and Welfare. 1978. Shokuhin Eisei Kensa Shishin 2. Tokyo, p 232-240.
  5. Frenkl R, Gyore A, Meszaros J, Szeberenyi S. 1980. A study of enzyme inducing effect of physical exercise in man. J Sports Med 20: 371-376.
  6. Han YN, Baik SK, Kim TH, Han BH. 1987. Antithrombotic activities of saponins from Ilex pubescens. Arch Pharm Res 10: 115-120. https://doi.org/10.1007/BF02857777
  7. Reitman S, Frankel S. 1957. A colorimetric method for the determination of serum glutamic oxaloacetic and glutamic pyruvic transaminase. Am J Clin Pathol 28: 58-61.
  8. Gerlach U, Hiby W. 1974. Methods of Enzymatic Analysis. Bergmeyer HU, ed. Academic Press, New York. Vol 2, p 569-573.
  9. Richmond W. 1976. Use of cholesterol oxidase for assay of total and free cholesterol in serum by continuous flow analysis. Clin Chem 22: 1579-1588.
  10. McGowan MW, Artiss JD, Strandbergh DR. 1985. A peroxidase-coupled method for the colorimetric determination of serum triglycerides. Clin Chem 29: 538-542.
  11. Jung DY. 1990. Toxicological studies on Korean pufferfish. MS Thesis. Kyungsung University. p 21.
  12. Fuchi Y, Noguchi T, Saito T, Morisaki S, Nakama S, Shimazaki K, Hayashi K, Ohtomo N, Hashimoto K. 1988. Mechanisms involved in the detoxification of pufferfish liver during the traditional cooking. J Food Hyg Soc 29: 320-324. https://doi.org/10.3358/shokueishi.29.320
  13. Noll T, Groot H. 1984. The critical steady-state hypoxic conditions in carbon tetrachloride-induced lipid peroxida-tion in rat liver microsomes. Biochem Biophy Acta 795:356-362. https://doi.org/10.1016/0005-2760(84)90086-9
  14. Recknagel RO, Glende EA. 1989. Mechanisms of carbon tetrachloride toxicity. Phar & Ther 43: 139-154. https://doi.org/10.1016/0163-7258(89)90050-8
  15. Decker K, Kepper D. 1973. Galactosamine-induced liver injury. In Progress in liver disease. Grune & Stratton, New York. Vol 14, p 183.
  16. Wang J, Wendel A. 1968. Studies on the hepatotoxicity of alactosamine endotoxin or galactosamine/TNF in the perfused mouse liver. Biochem Pharmacol 39: 267. https://doi.org/10.1016/0006-2952(90)90025-G
  17. Keppler D, Lesch R, Reutter W, Decker K. 1968. Experimental hepatitis induced by D-galactosamine. Exp Mol Pathol 9: 279-290. https://doi.org/10.1016/0014-4800(68)90042-7
  18. Mofty SK, Scrutton MC, Serroni A, Nicolini C, Farber JL. 1975. Early, reversible plasma membrane injury in galactosamine- induced liver cell death. Am J Pathol 79: 579-595.
  19. Farber JL, Gill G, Konishi Y. 1973. Prevention of galactosamine-induced liver cell necrosis by uridine. Am J Pathol 72: 53-62.
  20. Lesch R, Reutter W, Keppler D, Decker K. 1970. Liver restitution after acute galactosamine hepatitis; autoradiographic and biochemical studies in rats. Exp Mol Pathol 12: 58-69. https://doi.org/10.1016/0014-4800(70)90075-4
  21. Miller EC, Miller JA. 1972. Hepatocarconogenesis by chemicals. In Progress in liver disease. Popper H, Schaffner F, eds. Grune & Stratton, New York. Vol 5, p 699.
  22. Wout ZG, Pec EA, Maggiore JA, Palicharla P, Williams RH, Johnston TP. 1992. Poloxamer 407-mediated changes in plasma cholesterol and triglyceride following intraperitoneal injection to rats. J Parenter Sci Technol 46: 192-200
  23. Johnston TP, Palmer WK. 1993. Mechanism of poloxamer 407-induced hypertriglyceridemia in the rat. Biochem Pharmacol 46: 1037-1042 https://doi.org/10.1016/0006-2952(93)90668-M
  24. Goldstein JL, Brown MS. 1975. Familial hypercholesterolemia. A genetic regulatory defect in cholesterol metabolism.Am J Med 58: 147-150. https://doi.org/10.1016/0002-9343(75)90563-X
  25. Miller NE. 1978. The evidence for the antiatherogenicity of high density lipoprotein in man. Lipid 13: 914-919. https://doi.org/10.1007/BF02533850
  26. Ross R. 1986. The pathogenesis of atherosclerosis, An update. New Engl J Med 314: 488-500. https://doi.org/10.1056/NEJM198602203140806
  27. Croci T, Williams GM. 1985. Activities of several phase I and phase II xenobiotics biotransformation enzymes in cultured hepatocytes from male and female rats. Biochem Pharmacol 34: 3029-3035. https://doi.org/10.1016/0006-2952(85)90144-3
  28. Beauchamp C, Fridovich I. 1970. A mechanism for the production of ethylene from methional: The generation of the hydroxyl radical by xanthine oxidase. J Biol Chem 24: 4641-4646.
  29. Simon RH, Scoggin CH, Patterson D. 1981. Hydrogen peroxide causes the fetal injury to human fibroblasts exposed to oxygen radicals. J Biol Chem 256: 7181-7186.
  30. Halliwell B. 1978. Biochemical mechanism accounting for the toxic action of oxygen on living organisms. the key role of superoxide dismutase. Cell Biol Int Rep 2: 113-128. https://doi.org/10.1016/0309-1651(78)90032-2
  31. Deneke SM, Fanburg BL. 1980. Normobaric oxygen toxicity of the lung. New Engl J Med 303: 76-86. https://doi.org/10.1056/NEJM198007103030204
  32. Freeman BA, Crapo JD. 1982. Biology of disease: Free radicals and tissue injury. Lab Invest 47: 412-426.
  33. Steinberg D. 1997. Oxidative modification of LDL and atherogenesis. Circulation 95: 1062-1071. https://doi.org/10.1161/01.CIR.95.4.1062
  34. Kugiyama K, Kerns SA, Morrisett JD, Roberts R, Henry PD. 1990. Impairment of endothelium-dependent arterial relaxation by lysolecithin in modified low-density lipoproteins. Nature 344: 160-162. https://doi.org/10.1038/344160a0
  35. Mangin EL, Kugiyama K, Nguy JH, Kerns SA, Henry PD. 1993. Effects of lysolipid and oxidatively modified low density lipoprotein on endothelium-dependent relaxation of rabbit Aorta. Circulation 72: 161-166. https://doi.org/10.1161/01.RES.72.1.161
  36. Simon BC, Cunningham LD, Cohen RA. 1990. Oxidized low density lipoproteins cause contraction and inhibit endothelium-dependent relaxation in the pig coronary artery. J Clin Invest 86: 75-79. https://doi.org/10.1172/JCI114718
  37. Parthasarathy S, Young SG, Witztum JL, Pittman RC, Steinberg D. 1986. Probucol inhibits oxidative modification of low density lipoprotein. J Clin Invest 77: 641-644. https://doi.org/10.1172/JCI112349
  38. Amlie E, Lyberg T, Kaplun A, Prydz H. 1981. Thromboplastin activity of mouse peritoneal macrophages. Thrombosis Reseach 24: 61-71. https://doi.org/10.1016/0049-3848(81)90032-3
  39. Tanaka H, Andoh K, Narahara N, Uchiyama T, Kubota T, Takada M, Kobayashi N, Maekawa T. 1986. The leukocyte membrane and its contributi on to thrombosis and haemostasis with special reference to tissue factor. Act a Haematol Jap 49: 1583-1594.
  40. Lesnik P, Rouis M, Skarlatos S, Kruth HS, Chapman MJ. 1992. Uptake of exogenous free cholesterol induced upregulation of tissue factor expression in human monocyte-derived macrophages. Proc Natl Acad Sci USA 89: 10370-10374. https://doi.org/10.1073/pnas.89.21.10370

Cited by

  1. Comparisons of Food Component Characteristics of Wild and Cultured Edible Pufferfishes in Korea vol.46, pp.6, 2013, https://doi.org/10.5657/KFAS.2013.0725
  2. Effects of Puffer (Sphoeroides rubripes) Supplementation on Disruption of Antioxidant Defense Systems in Ethanol-Treated Rats vol.57, pp.1, 2003, https://doi.org/10.3177/jnsv.57.80
  3. 흑밀복(Lagocephalus gloveri)을 이용한 레토르트파우치 복국의 제조 및 품질특성 vol.53, pp.3, 2003, https://doi.org/10.5657/kfas.2020.0308