Dynamic Deformation Behavior of Rubber Under High Strain-Rate Compressive Loading by Using Plastic SHPB Technique

플라스틱 SHPB기법을 사용한 고무의 고변형률 하중 하에서의 동적변형 거동

  • 이억섭 (인하대학교 기계공학부) ;
  • 김경준 (인하대 대학원 기계공학과)
  • Published : 2003.11.01

Abstract

A specific experimental method, the Split Hopkinson pressure bar (SHPB) technique has been widely used to determine the dynamic material properties under the impact compressive loading conditions with strain rate of the order of 10$^3$/s∼l0$^4$/s. In this paper, dynamic deformation behaviors of rubber materials widely used for the isolation of vibration from structure under varying dynamic loading are determined by using plastic SHPB technique. A transition point to scope with the dynamic deformation behavior of rubber-like material is defined in this paper and used to characterize the specifics of the dynamic deformation of rubber materials.

Keywords

References

  1. Lee, O. S., Kim, M. S. and Baek, J. H. 'Dynamic Deformation Behavior of Aluminum-H32 under High Strain Rate Tensile Loading,' Proc. Of kspe, pp. 790-794, 2001
  2. Pochhammer, L., 'On the Propagation Velocities of Small Cscillations in an Unlimited Isotropic Circular Cylinder,' J. Reine Angewandte Math, vol. 81, p.324
  3. Chree, C., 'The Equations of an Isotropic Elastic Solid in Pplar and Cylindrical Coordinates,' Their solutions and Applications, Cambridge Phil. Soc. Trans.
  4. Davies, R.M., 'An critical study of the Hopkinson pressure Bar,' Phil. Tran. A, Vol. 240, p.375, 1948 https://doi.org/10.1098/rsta.1948.0001
  5. Follansbee, P.S., ', in Metals Handbook Ninth Edition, Mechanical Testing,' American Society for Metals, Vol. 8, pp. 198-203
  6. Lee, O. S., You, S. S., Chung, J. H. and Kang, H. S., 'Dynamic Deformation Under a Modified Split Hopkinson Pressure Bar Experiment,' KSME International Journal, Vol. 12, No. 6, pp. 1143-1149
  7. Lee, O. S., Lee. J. Y., Kim, G. H. and Hwang, H. S., 'High Strain-rate Deformation of Composite Materials Using a Split Hopkinson Bar Technique,' Vol. 183-187, Part 1, pp. 307-312, 2000
  8. Lee, O. S. and Kim, G. H., Thickness Effects on Mechanical Behavior of a Composite Material(1001P) and Polycarbonate in Split Hopkinson Pressure Bar Technique', Journal of Materials Science Letters, Vol. 19, pp. 1805-1808, 2000 https://doi.org/10.1023/A:1006786122575
  9. Lee, O. S., Kim, M. S., Hwang, S. W. and Cho, G. S. 'Dynamic Deformation Behavior of Aluminum Alloys under High Strain Rate Compressive/Tensile Loading,' Journal of the Korean Society of Precision Engineering, Vol. 20, No. 1, pp. 196-204, 2003
  10. Bragow, A. M. and Lomunow., 'Methodological Aspects of Studying Dynamic Material Properties Using the Kolsky Method,' Int.J.Impact Energy, Vol. 16, pp. 321-330, 1994 https://doi.org/10.1016/0734-743X(95)93939-G
  11. Lee, O. S. and Kim, G. H., 'Determination of Deformation Behavior of the A16061-T6 under High Strain Rate Tensile Loading Using SHPB Technique,' Transaction of KSME (A), Vol. 24, No. 12, pp. 3033-3039, 2000
  12. Zukas, J. A., 'High Velocity Impact Dynamics.' John Wiley & Sons, Inc, 1990
  13. Blow, C. M and Hepburn, C. 'Rubber Technology and Manufacture,' Published for the Plastics and Rubber Institut by Butterworth Scientific, pp. 80-85
  14. Hopkinson, B., 'A Method of Measuring the Pressure Produced in the Detonation of Explosives or by the Impact of Bullets,' Phil. Trans. A, Vol. 213, pp. 437, 1941 https://doi.org/10.1098/rsta.1914.0010