Ettringite/Thaumasite Formation, Stability and Their Effect on Deterioration of Concrete

에트린자이트/사우마사이트의 형성 및 안정도와 콘크리트 성능저하에 미치는 영향

  • Published : 2003.03.01

Abstract

Ettringite and thaumasite were observed in some concrete. The morphology and occurrence of these minerals were closely examined by performing SEM/EDAX analyses. We also experimentally induced the concrete deterioration using $Na_2SO_4$ solution with application of various environmental conditions. The stability of these minerals and deterioration characteristics under applied experimental conditions were determined. Abundant ettringite formed by“through solution reaction”occurred in many open spaces, and some microscopic ettringite formed by "tophochemical replacement" of calcium aluminate also occurred in cement paste. Severe cracking of cement paste causing premature deterioration was often associated with ettringite location. Under specific condition, ettringite was transformed to thaumasite, tricthloroaluminate, or decomposed. Thaumasite occurred with association of ettrinsite in concrete containing carbonate aggregate being subject to dedolomitization or in some concrete being subject to carbonation. Thaumasite appears to be formed under the similar condition to the general ettringite forming condition, but it formed solid solution with ettringite by substituting pre-existing ettringite. Ettringite can also be transformed to trichloroaluminate in the presence of abundant chlorides, but trichloroaluminate changed back to ettringite in late sulfate attack. It is considered that the substitution reaction direction solely depend on the concentration of chloride and sulfate ion.

일부 기존 콘크리트 내에서 발견되는 에트린자이트(ettringite)와 사우마사이트(thaumasite)에 대하여 산출상태 및 화학성분을 조사하고, $Na_2SO_4$ 용액을 이용한 인공적인 변질 실험을 수행하여, 이들 광물의 특정 환경 조건하에서의 안정도와 콘크리트의 성능저하에 미치는 영향을 연구하였다. 에트린자이트와 사우마사이트의 형태 관찰과 성분분석을 위하여 전자현미경(SEM)을 통한 EDAX분석을 실시하였다. 에트린자이트는 시멘트 페이스트의 공간을 충진하거나, 시멘트 페이스트를 치환한 형태로 나타나며, 미세 균열이 에트린자이트로부터 시멘트 페이스트 내부로 전파되고 있음이 잘 관찰되었다. 에트린자이트는 특정 환경 조건하에서 사우마사이트와 트리클로로알루민산염(trichloroaluminate)으로 쉽게 전이되거나 분해되었다. 사우마사이트는 탈백운석화작용을 수반하는 탄산염 골재를 사용한 콘크리트와 탄산화가 진행된 해안지역의 콘크리트에서 에트린자이트와 수반되어 나타난다. 사우마사이트의 형성 조건은 에트린자이트와 유사한 조건에서 형성되는 것으로 생각되나, 에트린자이트가 먼저 형성된 후 치환작용에 의하여 에트린자이트/사우마사이트 고용체를 형성하는 것으로 생각된다. 콘크리트내의 에트린자이트는 염화물이 공급될 경우 염소가 에트린자이트의 황산염을 부분 또는 완전한 치환하여 에트린자이트와 유사한 결정구조를 가지는 트리클로로알루민산염으로 전이되며, 또한, 트리클로로알루민산염은 황산염이 다시 공급될 경우, 치환반응에 의하여 다시 에트린자이트로 전이되었다. 두 광물의 치환반응의 반응 경로는 용액내의 염소이온과 황산이온의 농도에 따르는 것으로 생각된다. 이상과 같이, 에트린자이트는 콘크리트 내에서 다양한 내외부적인 화학작용 따라 특징적인 산출 양상을 보이며, 주변 환경 조건에 따라 다른 광물로 전이되는 나타내었다. 이러한 연구결과, 에트린자이트의 생성에 따른 콘크리트의 성능저하는 그 광물학적 특성과 분포양상에 관련성을 가지는 것으로 나타났다.

Keywords

References

  1. Al-Amoudi, O.S.B., Abduljauwad, S.N., Rasheeduzzarfar,and Maslehuddin, M. (1992) Effect of chloride and sulfate contamination in soils on corrosion of steel and concrete. Transportation Research Record , 1345, 67-73.
  2. Chinchon, J.S., Ayora , C., Aguado , A., and Guirado,H. (1995) Influence of weathering of iron sulfides contained in aggregates on concrete durability. Concrete Cement and Research, 25, 6, 1264-72 .
  3. Cohen, M.D. (1983) Modeling of expansive cement. Cement and Concrete Research, 13, 4, 519-528.
  4. Cohen, M.D., Campbell, E., and Fowle, W. (1985)Kinetics and morphology of ettringite formation. Proceedings of the 7th International Conference on Cement Micro scopy, International Cement Microscopy Association , Ft. Worth, Texas, 360-381.
  5. Cramond, N. (2002) The occurrence of thaumasite in modern construction-a review. Cement and Concrete Composites, 25, 293-402.
  6. Day, R.L. (1992) The effect of secondary ettringite formation on durability of concrete: A literature analysis. PCA Research and Developm ent Bulletin RD108T, 1-115.
  7. Deng, M. and Tang, M. (1994) Formation and expansion of ettringite crystals. Cement and Concrete Research, 24, 6, 119-126.
  8. Diamond, S. (1996) Delayed ettringite formation - processes and problems. Cement and Concrete Composites, 18, 3, 205-215. https://doi.org/10.1016/0958-9465(96)00017-0
  9. Gaze, M.E. and Cramond, N.J. (2002) The formation of thaumasite in a cement: lime, sand mortar exposed to cold magnesium and potassium sulfate solutions. Cement and Concrete Composites, 22, 209-222.
  10. Hartshorn , S.A., Sharp, J.H., and Swamy, R. N.(2002) The thaumasite form of sulfate attack in Portland-l imestone cement mortars stored in magnesium sulfa te solution. Cement and Concrete Composites, 24, 351-359.
  11. Kosmatka, S.H. and Panarese, W.C. (1990) Design and contr ol of concrete Mixtures. 13th Edition,Portland Cement Association, 206p.
  12. Kurdowski, W., Trybalska, B. , and Duszak, S. (1994) SEM studies of corrosion of cement paste in chloride solut ion. Proceedings of the 16th International Conference on Cement Microscopy, Eds:Gouda, G. R.; Nisperos, A. and Bayles J., International Cement Microscopy Association, Texas,80-89.
  13. Lee, H. and Cody, R.D. (2002) Secondary mineral formation and expansion mechanism involved in concrete pavement deterioration . Korean Society of Engineering Geology, 12,1, 95-109.
  14. Lee, H, Cody, R.D., Cody, A.M., and Spry, P.G. (2002) Observation on brucite formation and the role of brucite in Iowa highway concrete deterioration. Environ. & Eng. Geosc. 8, 2, 137-145.
  15. Metha, P.K. (1969) Morphology of calcium sulphoalumin ate hydrate. Journal of the American Ceramic Society, 52, 9, 521-522.
  16. Metha, P.K. (1983) Mechanism of sulfate attack on Portland cement concrete - another look. Cement and Concrete Research. 13. 3, 401-406.
  17. Monteiro, P.J.M (1985) Ettringite formation on the aggregate-cement paste interface. Cement and Concrete Research, 15, 2, 378-380.
  18. Neville, A.M. (1969) Behavior or concrete in saturated and weak solutions or magnesium sulphate or calcium chloride. Journal of Materials. 4. 4. 781-816.
  19. Metha, P.K. and Wang, S. (1982) Expansion of cttringitc by water adsorption. Cement and Concrete Research, 12, 1, 121-122.
  20. Obcrholstcr, R.E., Toit, P. D.U., and Prctorius. .J.L.(1984) Deterioration of concrete containing a carbonaceous sulphide-bearing aggregate. In: Bayles, K. and Albuquerque, C.A.R.K (eds.), Proceedings or the 6th International Conference on Cement Microscopy,International Cement Microscopy Association.New Mexico, 360-373.
  21. Older. I. and Gasser, M. (1988), Mechanism of sulfate expansion in hydrated portland cement. J. American Ceramic Society, 71, 1015-1020.
  22. Ramchandran, V.S., Phill, M., and Ceram, F.I. (1976) Calcium Chloride in Concrete, Applied Science Publishers Ltd, 207 p.
  23. Sahu, S, Badger, N., and Thaulow, N. (2002) Evidence of thaumasite formation in Southern California concrete. Cement and Concrete Composites,24. 379-384.
  24. Taylor, H.F.W. (1990) Cement Chemistry, London,Academic Press Ltd. 475 p.
  25. Wolter, S. (1996) Ettringitc: Cancer or concrete, New York, Burgess Publishing co., 172p.
  26. Worthington, .J.C., Bonner. D.G., and Nowell, D.V.(1988) Influence of cement chemistry on chloride attack or concrete. Materials Science and Technology, 4, 305-313.