Estimated Gas Concentrations of MA(Modified Atmosphere) and Changes of Quality Characteristics during the MA Storage on the Oyster Mushrooms

느타리버섯의 환경기체조성 농도 예측 및 MA 저장 중 품질특성 변화

  • Lee, Hyun-Dong (National Agricultural Mechanization Research Institute) ;
  • Yoon, Hong-Sun (National Agricultural Mechanization Research Institute) ;
  • Lee, Won-Og (National Agricultural Mechanization Research Institute) ;
  • Jung, Hoon (National Agricultural Mechanization Research Institute) ;
  • Cho, Kwang-Hwan (National Agricultural Mechanization Research Institute) ;
  • Park, Won-Kyu (National Agricultural Mechanization Research Institute)
  • 이현동 (농촌진흥청 농업기계화연구소) ;
  • 윤홍선 (농촌진흥청 농업기계화연구소) ;
  • 이원옥 (농촌진흥청 농업기계화연구소) ;
  • 정훈 (농촌진흥청 농업기계화연구소) ;
  • 조광환 (농촌진흥청 농업기계화연구소) ;
  • 박원규 (농촌진흥청 농업기계화연구소)
  • Published : 2003.03.01

Abstract

This study was conducted to find out effective MA (Modified Atmosphere) gas compositions on the oyster mushroom through statistical analysis of the respiration rate and MA storage for the various packaging materials. Under the various gas compositions, the oxygen consumption rate of oyster mushroom was from 28.9 to 161.4mgO$_2$/kg$.$hr and the carbon dioxide evolution rate was from 53.4 to 166.9 mgCO$_2$/kg$.$hr at 20$^{\circ}C$. The estimated MA condition of oyster mushroom were 2.5∼4.5%O$_2$and 11.5∼l3%CO$_2$by the RSREG(Response Surface Regression). The gas compositions of MA packaging are following that 0.03mm LDPE were 1.6∼3.0%O$_2$and 3.9∼5.3%CO$_2$,0.05mm LDPE were 1.2∼1.3%O$_2$and 9.0∼11.1%CO$_2$and Nylon+PE were 0.9∼1.2%O$_2$and 33.5∼39.6%CO$_2$. The weight loss increased at 0.03mm LDPE but has the lowest value at Nylon+PE. The hardness of pileus and stipe was decreased with storage periods. The $\Delta$E-value increased with storage period and seriously changed in early storage period at 12 and 20$^{\circ}C$. In the 0.05mm LDPE, the gas compositions of packaging were similar to estimated gas compositions from the RSREG and the storage quality was superior to the other packaging materials in weight loss, hardness, and color difference at 4, 12 and 20 $^{\circ}C$.

느타리버섯의 호흡속도 측정 및 MA 포장 저장 실험을 수행한 결과 호흡속도는 2$0^{\circ}C$에서 산소소비속도 28.9∼161.4mgO$_2$/kg$.$hr로 나타났으며 이산화탄소방출 속도는 53.4∼166.9mg$CO_2$/kg$.$hr로 나타났다. 산소소비속도와 이산화탄소발생속도를 반응표면분석한 결과를 이용하여 느타리버섯의 저장 가능 기체조성을 예측한 결과 2.5∼4.5% $O_2$와 11.5∼l3%$CO_2$로 나타났다. 포장내 기체조성은 0.03mmLDPE의 경우 $O_2$농도 1.6∼3.0%, $CO_2$농도 3.9∼5.3% 사이였으며 0.05mmLDPE에서는 $O_2$농도 1.2∼l.3%, $CO_2$농도 9.0∼11.1%사이였고 Ny+PE포장에서는 $O_2$농도 0.9∼l.2%, $CO_2$농도 33.5∼39.6% 사이로 나타났다. 중량감모율의 경우 0.03mmLDPE 포장이 가장 높게 나타났으며 Nylon+PE포장이 가장 낮게 나타났다. 갓과 자루의 경도는 저장기간에 따라 감소하였으며 갓의 경도는 저장온도에 영향을 받았으며 자루의 경도는 포장재질에 더욱 영향을 받는 것으로 나타났다. 색도의 변화는 저장 기간이 경과할수록 $\Delta$E값이 증가하는 것으로 나타났으며 12$^{\circ}C$와 2$0^{\circ}C$에서는 저장초기에 $\Delta$E값의 변화가 급속하게 일어나는 것으로 나타났다. 0.03mmLDPE 포장구가 중량 감모율이 높고 색도변화가 심하였고 Nylon+PE포장의 경우에는 자루의 경도저하와 이산화탄소의 과도한 축적으로 알콜냄새가 발생하였다. 0.05mmLDPE 포장구의 경우 예측된 환경기체조성에 가장 유사한 포장내 기체조성을 유지하였으며 중량감모, 경도, 색도 등 전반적인 저장 품질이 우수하였다.

Keywords

References

  1. 南出 降久, 垣生 俊夫, 緖方 邦安 (1980) 數種キノコの鮮度におよほす貯藏溫度の影響 日本食品工業學會誌, 27, 281-287
  2. Burton, K.S., Frost, C.E. and Atkey, P.T. (1987) Effect of vacuum cooling on mushroom browing. Int. J. Food Sci. & Technology, 22, 599-606
  3. Nichols R. and Hammond, J.B.W. (1973) Storage of mushrooms in pre-packs: The effect of changes in carbon dioxide and oxygen on quality. J. sci. Food. Agric., 24, 1371-1381 https://doi.org/10.1002/jsfa.2740241108
  4. 김준한, 김종국, 문광덕, 손태화, 최종욱 (1995) 양송이버섯의 MAP및 CA저장 효과, 농산물저장유농학회지, 2, 225-232
  5. 이세은, 김동만, 김길환 (1991) MA저장중 표고버섯(Leutinus edodes)의 품질변화에 관한 연구. 한국식품영양학회지. 20. 133-138
  6. 한대석, 안병학, 신현경 (1992) 환경가스조절 저장법을 이용한 느타리버섯과 포고버섯의 유통기한 연장. 한국식품과학회지, 24, 376-381
  7. 山口優一, 山下市二, 靑木章平 (1988) 裁培農家におけるシイタケの鮮度保待に關する硏究. 日本食品低溫保藏學會誌, 14, 59-62
  8. Sevine, E., Klougart, A. and Rasmussen, C. R. (1967) Ways of prolonging the shelf-life of fresh mushroom. Mushroom Sci, 6, 463-474
  9. 南出 降久, 垣生 俊夫, 緖方 邦安 (1980) シイタケの鮮度におよほす炭酸ガス($CO_2$)ならびに酸素($O_2$)濃度の影響 日本食品工業學會誌, 27, 505-510
  10. Varoquaux. P., B. Gouble, C. Barron, F. Yildiz (1999) Respiratory parameters and sugar catabolism of mushroom (Agaricus bisporus Lange), Postharvest Biology and Technology, 16, 51-61 https://doi.org/10.1016/S0925-5214(99)00004-6
  11. Kader, A.A. and Moris, L.L (1957) Relative tolerance of fruits and vegetables to elevated $CO_2$ and reduced $O_2$ levels, Michigan State Univ. Hort. Rep., 28. 260
  12. Thompson, A.K. (1998) Controlled Atmosphere Storage of Fruits and Vegetables. CAB International. p 73-77
  13. Yang, C.C. and M.S. Chinnan. (1988) Computer Modeling of Gas Composition and Color Development of Tomatoes Stored in Polymeric Film. J. Food Sci. 53, 869-872 https://doi.org/10.1111/j.1365-2621.1988.tb08974.x
  14. Fishman, S., V. Rodov, and S. Ben-Yehoshua. (1996) Postharvest Life of Fruit and Vegetables. Model of Modified atmosphere Packages with Film Perforations. Acta Hort. p 129-137
  15. jurin, V. and M. Karel. (1963) Studies on Control of Respiration of McIntosh Apples by Packaging Methods. Food Technology. p 782-786
  16. Yam, K.L. and D.S. Lee. (1995) Design of Modified Atmosphere Packaging for Fresh Produce, Active Food Packaging. 55-73
  17. Hagger, P.E., D.S. Lee, and K.L. Yam. (1992) Application of an Enzyme Kinetics Based Respiration Model to Closed System Experiments for Fresh Produce. J. Food Process Engineering. 15, 143-157 https://doi.org/10.1111/j.1745-4530.1992.tb00148.x
  18. Myers, R.H. (1976) Response Surface Methodology. p 126-175
  19. Hammond, J.B.W. (1979) Changes in composition of harvested mushroom(Agaricus bisporus). Phytochem., 18, 415-422 https://doi.org/10.1016/S0031-9422(00)81878-6