Characteristics of Soy Protein Hydrolysates with Enzymes Produced by Microorganisms Isolated from Traditional Meju

전통 메주 유래 미생물이 생산하는 효소에 의한 대두단백 분해물의 특성

  • 정낙현 (가톨릭상지대학 식품영양과) ;
  • 신용서 (고려대학교 생명공학원) ;
  • 김성호 (경북과학대학 전통식품연구소) ;
  • 임무현 (대구대학교 식품·생명 화학공학부)
  • Published : 2003.03.01

Abstract

In order to establish the enzymatic hydrolysis system improving of taste and flavor in the preparation of soy protein hydrolysates using the enzymes with excellent hydrolytic ability and different hydrolysis pattern of soy protein, Degree of hydrolysis(DH) and surface hydrophobicity under the optimal conditions of enzyme reaction, hydrolysis patterns by the SDS electrophoresis and sensory evaluation of soy protein hydrolysates by enzyme reactions were investigated. Four enzyme reactions were highly activated at pH 7.0, 45$^{\circ}C$ under the optimal conditions. As result of changes on the pattern of soy-protein hydrolysates by SDS-electrophoresis, high molecular peptides of hydrolysates by No. 5(Mucor circinelloides M5) and No. 16(Bacillus megaterium B16) enzymes were slowly decrease and 66KD band of these were remained after 3hours reaction. Production of low molecular peptides of hydrolysates by No. 4(Aspergillus oryzae M4) and No. 95(Bacillus subtilis YG 95) enzymes were remarkably detected during the proceeding reactions. As results of HPLC analysis, low molecular peptides of 15∼70KD were mainly appeared during the proceeding enzyme reactions. And, the more DH was increased, the more SDS-surface hydrophobicity was decreased. Hydrolysates by No. 4 enzyme was not only the highest DH of all hydrolysates, but the strongest bitter taste in a sensory evaluation. Sweat taste among the hydrolysates showed little difference. But, when combinative enzymes were treated, combinative enzyme of No. 4(Aspergillus oryzae M4)and No. 16(Bacillus megaterium B16) showed the strongest sweat taste. In conclusion, we assumed that it will be possible to prepare the hydrolysates having functionality when soy-protein were hydrolyzed by these specific enzymes.

대두단백 가수분해 산물의 맛과 향을 개선하기 위해 효소에 의한 가수분해 system을 확립하기 위하여 단백질 가수분해 패턴이 서로 다른 효소로 생산된 단백 분해산물의 가수분해도와 표면 소수도 등을 측정하였다. 이들 분해물의 pattern을 SDS 전기영동으로 조사하였고, 효소반응에 의한 단백질분해물의 관능검사를 실시하였다. 각 균주가 생산한 단백질 분해효소의 pH 변화에 따른 효소의 활성은 No. 16 효소(Bacillu megarerium Bl6)와 No. 4효소(Aspergillus oryzae M4)는 pH 7.0에서 No. 95효소(Bacillu subtilis YG 95)와 No. 5효소(Mucor circinelloides M5)는 8.0에서 가장 높은 효소반응 활성을 보였다. 또한 반응온도에 따른 효소활성의 크기는 4가지 효소 모두 45$^{\circ}C$에서 가장 높은 활성을 나타내었다. 대두단백질 분해물의 SDS 전기영동 pattern변화에서, Bacillus megaterium Bl6과 Mucor circinelloides M5의 효소 (No. 16, No. 5)는 반응 후 분자량이 비교적 큰 peptide가 많이 생성되었으며, 효소반응 3시간 경과 후에도 분자량 66KD의 peptide를 확인할 수 있었다. 반면에 Bacillus subtilis YG 95와 Aspergillus oryzae M4의 효소(No. 95, No. 4)는 분자량 15KD∼45KD 미만의 작은 분자량의 peptide 물질이 주로 생성되었으며, 반응 2시간 경과후에는 30KD 미만의 저분자 Peptide가 주로 생성되었다. 이와 같은 결과는 HPLC 분석 결과와 일치하였다. 가수분해가 진행됨에 따라서 SDS 표면소수도가 크게 저하되었으며, Aspergillus oryzae M4 효소의 분해물의 가수분해도가 가장 높았다. 관능검사 결과, No. 4(Aspergillus oryzae M4)와 No. 95(Bacillus subtilis YG 95) 가 강한 쓴맛을 나타내었다. 각각의 효소들을 조합해서 분해한 단백분해물을 관능검사한 결과, Aspergillus oryzae M4 효소와 조합된 것의 대두단백질 분해물이 비교적 강한 쓴맛을 나타내었다. 분해물의 단맛은 시료별로 큰 차이가 나타나지 않았으나 Bacillu megarerium Bl6과 Aspergillus oryzae M4를 조합하였을 때 상대적으로 단맛의 정도가 높게 나타났다. 따라서 이와 같은 효소특성을 이용하여 대두단백질을 가수분해를 하였을 때 다양한 단백질 분해물의 제조에 이용이 가능할 것으로 사료된다.

Keywords

References

  1. Lee, C.H. (1992) Application and development of protein resource, Food Science and Industry, 25, 93-95
  2. Kim, S.Y., Park, P.S. W. and Rhee, K.C. (1990) Functional properties of proteolytic enzyme modified soy protein isolate, J. Agric. Food Chem., 38, 651-664 https://doi.org/10.1021/jf00093a014
  3. Deeslie, W.D. and Cheryan, M. (1981) Continuous enzymatic modification of protein in an ultrafiltration reactor, J. Food Sci., 46, 1035-1042 https://doi.org/10.1111/j.1365-2621.1981.tb02987.x
  4. Finley, J.W, Wheeler, E.L., Walker, Jr.H.G., Finlayson, A.J. (1982) Effect of cystine oxidation on lysinoalanine formation in protein, J. Agric. Food Chem., 30, 818-820 https://doi.org/10.1021/jf00113a004
  5. Velisek, J., Davidek, T., Davidek, J. and Hamburg, A. (1991) 3-chloro-1,2-propanediol derived amino alcohol in protein hydrolysates, J. Food Sci. 56, 136-138 https://doi.org/10.1111/j.1365-2621.1991.tb07994.x
  6. Davidek, T., Davidek, J., Velisek, J., Kubelka, V. and Viden, I. (1991) 3-chloro-1,2-propanediol derived amino acids in protein hydrolysates, J. Food Sci. 56, 139-142 https://doi.org/10.1111/j.1365-2621.1991.tb07995.x
  7. Franzen, K.L. and Kinsella, J.E. (1976) Functional properties of succinylated and acetylated soy protein, J. Agric. Food Chem., 24, 788-795 https://doi.org/10.1021/jf60206a036
  8. Kim, K.S. and Rhee, J.S. (1989) Effect of acetylation on conformation of glycinin, Kor. J. Food Sci. Technol., 21, 714-720
  9. Kim, N.S., Kwon, D.Y. and Nam, Y.J. (1988) Effects of phosphorylation and acetylation on functional properties and structure of soy protein, Kor. J. Food Sci. Technol., 20, 625-630
  10. Noe, F.F., Faith, W.T. (1973) Enzyme protein solubilization (to Rhom and Haas Companyy, USE), US Patent, No. 3,761,353
  11. Yamashita, M., Arai, S. and Fujimaki, M., 1969, Applying proteolytic enzymes on soybean, IV. A ninhydrin-negative bitter peptide in peptic hyrolysate of soybean protein, J. Agric. Biol, Chem., 33, 321-330 https://doi.org/10.1271/bbb1961.33.321
  12. Lin, C.F., Lee, C.R. (1987) Preparing protein for hydrolysis and product, US Patent, No. 4,636,388
  13. Pormmer, K. (1995) New proteolytic enzyme for the production of savory ingredients, Cereal Foods World, 40, p745
  14. Lee, C.H., Kim, C.S. and Lee, S.P. (1984) Studies on the enzymatic partial hydrolysis of soybean protein isolates, J. Korean Soc. Food Sci. Nutr., 16, 135-141
  15. Chae, H.J., In, M.J. and Kim, M.H. (1997) Optimization of enzymatic treatment for the production of hydrolyzed vegetable protein, J. Korean Soc. Food Sci. Nutr., 29, 1125-1130
  16. Lahl, W.J. and Braun, S.D. (1994) Enzymatic production of protein hydrolysates for food use, Food Technol, 48, 68-71
  17. Kang, M.J., Kim, S.H., Joo, H.K., Lee, G.S and Yim, M.H. (2000) Isolation and identification of Microorganisms producing the soy protein hydrolyzing Enzyme, from the traditional Me-ju, J. Korean Agricu. Chem. Biotechnol. Soc. 43, 86-94
  18. Yim, M.H. and Lee, J.H. (2000) Functional Properties of Fractionated Soy Protein Isolates by Proteases from Me-ju, Food Sci. Biotechnol. 9, 253-257
  19. Byun, Y.G. Kim, S.H. Joo, H.K. Lee G.S. and Yim, M.H. (1998) Isolation and Identification of Protease Producing Bacteria, Bacillus subtilis YG-95 from the Traditional Me-ju and Its production Conditions, Agricultural Chemistry and Biotechnology, 41, 342-348
  20. Lowry, O.H., Rosebrogh, N.J., Parr, A.L. and Randall, R. J. (1951) Protein measurement with the Folin phenol reasgent, ., 193, 265-271
  21. Anson, M.L. (1938) The estimation of pepsin, papain and cathepsin with hemoglobin, J. Gen. Physio., 22, 79-95 https://doi.org/10.1085/jgp.22.1.79
  22. Bollag, D.M, Rozycki, M.D. and Edelstein S.J. (1996) In Protein methods, Chapter 5. Gel electrophoresis under denaturing conditions, A John Wiley and Sons Publication, USA
  23. Hsu, H.W., Vavak, D.L., Sattetlee, L.D. and Miller A (1977) A multienzyme technique for estimating protein gestibility. J. Food Sci., 42. 1269-1272 https://doi.org/10.1111/j.1365-2621.1977.tb14476.x
  24. Mannheirn, A and Cheryan, M. (1990) Continuous hydrolysis of milk protein in a membrane reactor, J. Food Sci., 55, 381-384 https://doi.org/10.1111/j.1365-2621.1990.tb06769.x
  25. Adler-Nissen, J. (1986) In Enzymic Hydrolysis of Food Proteins, Chapter 2. Some fundamental aspects of food protein hydrolysis, Elsevier Applied Science Publishers, London and New York
  26. Friedman, M., Pang, J. and Smith, G.A. (1984) Ninhydrin reactive lysine in food proteins, J. Food Sci., 49, 10-15 https://doi.org/10.1111/j.1365-2621.1984.tb13656.x
  27. Pearce, K.N., Karahalios, D. and Friedman, M. (1988) Ninhydrin assay for proteolysis in ripening cheese, J. Food Sci., 53, 432-438 https://doi.org/10.1111/j.1365-2621.1988.tb07723.x
  28. Kato, A., Matsuda, T., Matsudomi, N. and Kobayashi, K. (1984) Determination of protein hydrophobicity using a sodium dodecyl sulfate binding method. J. Agric. Food Chem., 32, 284-290 https://doi.org/10.1021/jf00122a027
  29. Larmond, E. (1973) Methods for sensory evaluation of food, Canada Department of Agriculture, Ottawa, Canada
  30. Shim, C.W., Jeong, K.S., Shin W.C. and Yu J.H. (1994) Effect of pH on the production and characteristics of protease by Bacillus sp. SH-8 and Bacillus sp. SH-8M, Kor. J. Appl. Microbiol Biotechnol., 22, 59-64
  31. Kim, T.H., Park, S.H., Lee, D.S., Kwon, T.K., Kim J.K. and Hong, S.D. (1990) Properties of alkaline protease produced by an alkalophillic Bacillus sp., Kor. J. Appl. Microbiol Biotechnol., 18, 159-164
  32. Chun, S.S., Cho, Y.J., Son, G.M., Choi, H.J. and Choi, C. (1998) Change of funtional properties and extraction of protein from abolished protein resource by protease, J. Korean Agricu. Chem. Biotechnol. Soc. 41, 13-17
  33. Choi, C., Choi, K.S., Kim, S., Lee, S.H., Son J.H., Choi, H.J., Lee, S.S., and Ahn, B.J. (1997) Characteristics and action pattern of protease from Scopulariopsis brevicaulis in korean traditional meju, Kor. J. Appl. Microbiol. Biotechnology, 25, 56-61
  34. Cha, W.S., Cho, Y.J., and Choi, C. (1989) Production and purification of alkaline protease by Aspergillus fumigatus. J. Kor. Soc. Food Nutr., 18, 279-286
  35. Kim, T.H., Park, S.H., Lee, D.S., Kwon, T.K., Kim, J.K. and Hong, S.D. (1990) Properties of alkaline protease produced by an alkalophillic Bacillus sp., Kor. J. Appl. Microbiol Biotechnol., 18(2), 159-164
  36. Yeom, H.W., Kim, K.S., and Rhee, S.J. (1994) Soy-protein hydrolysate debittering by lysine-acetylation, J. Food Sci., 59, 1123-1126 https://doi.org/10.1111/j.1365-2621.1994.tb08206.x
  37. Han, E.S., Lee, H.J. and Shon, D.H. (1993) Effect of surface hydrophobicity of soybean peptide on the concentration of serum cholesterol and fecal steroid excretion in rats, Kor. J. Food Sci. Technol., 25, 571-575