The Effect of Microstructure Nonuniformity on the Electrical Characteristics of ZnO Varistors with $Al_2$O$_3$ doping

  • Han, Se-Won (KERI (Korea Electrotechnology Research Institute)) ;
  • Cho, Han-Goo (KERI (Korea Electrotechnology Research Institute))
  • Published : 2003.08.01

Abstract

The influence of microstructure nonuniformity on the electrical characteristics of ZnO varistors was analyzed with the added amount of $Al_2$O$_3$ dopants. $Al_2$O$_3$ doping can effectively inhibit grain growth. When $Al_2$O$_3$ content is in the range between 0-0.1 %, the average grain size and the standard deviation decrease quickly and the grain growth is strongly inhibited. Therefore, it is possible to increase the microstructure uniformity by accurate addition of $Al_2$O$_3$ to the ZnO varistor. The breakdown voltage increases with the decrease of standard deviation. The greater the uniformity of the Zno varistor means the higher the global breakdown voltage. The $Al_2$O$_3$ dopants having about 0-0.023 wt% content can effectively improve the voltage ratio, and the voltage ratio reaches a minimum value of 2.32 at an $Al_2$O$_3$ content of 0.005 wt%.

Keywords

References

  1. H. Wang, W. Li and J. F. Cordaro, 'Single junction in ZnO varistors studied by current-voltage characteristics and deep level transient spectroscopy', Jpn. J. Appl. Phys., Vol.34 [4A], pp. 1765-71, 1995.
  2. J.L. He, S. C. Chen, S. W. Han, H. G. Cho, 'Statistic analysis on nonuniformity of electrical parameters of ZnO varistors', JEEIS, Vol. 3 [5], pp. 631-637, 1998.
  3. M. Trontelj and V. Krasevec, 'Effects of antimony oxide in the sintering of ZnO varistors', pp. 108-116, in Ceramics Transactions, Vol. 3: Advances in varistor technology, edited by L. M. Levinson, the American Ceramic Society, Inc., Westerville, Ohio, 1988
  4. M. Matsuoka, 'Nonohmic properties of Zinc oxide ceramics', Jpn. J. Appl. Phys. Vol. 10 [6], pp. 36-46, 1971.
  5. H. D. Hwang, S. W. Han, H. B. Kann, 'The embodiment of real ZnO varistor and the analysis of electrical properties with Voronoi network', The Transactions of The Korean Institute of Electrical Engineers, Vol.47 [5], pp. 607-613, 1998.
  6. L. M. Levinson and H. R. Philipp, 'Zinc oxide varistors, a review', Am. Ceram. Soc. Bull., Vol. 65 [4], pp. 639-47, 1986.
  7. T. Senda and R. C. Bradt, 'Grain growth in Zinc oxide during the sintering of Zinc oxide-antimony oxide ceramics', J. Am. Ceram. Soc., Vol. 74 [6], pp. 1296-1302, 1991.
  8. T. Takemura, M. Kobayashi, Y. Takada and K. Sato, 'Effects of aluminum as dopant on the characteristics of ZnO varistors', Advances in Ceram. Vol. 29 [2], pp. 101-06, 1992.
  9. W. G. Carlson and T. K. Gupta, 'Improved varistor nonlinearity via donor impurity doping', J. Appl. Phys. Vol. 53 [8], pp. 5746-53, 1982.
  10. K. Eda, 'Zinc oxide varistors,' IEEE Electrical Insulation Magazine, Vol.5 [6], pp. 28-41, 1989.
  11. S. W. Han, H. B. Kang, 'Effect of $Al_{2}O_{3}$ as dopants on the complex impedance and J-E behavior of ZnO-$Bi_{2}O_{3}$ varistor', The Transactions of The Korean Institute of Electrical Engineers, Vol. 46 [10], pp. 1502-1508, 1997.