FIAAARE =22 Agd A335(2003. 9)

4 259 1% Q 22HY A5
(Preliminary Performance Evaluation of a Web
Crawler with Dynamic Scheduling Support)’

Yong-Doo Lee”, Soo-Hwan Chae™

Abstract A web crawler is used widely in a variety of Internet applications such as search
engines. As the Internet continues to grow, high performance web crawlers become more
essential. Crawl scheduling which manages the allocation of web pages to each process for
downloading documents is one of the important issues. In this paper, we identify issues that
are important and challenging in the crawl scheduling. To address the issues, we propose a
dynamic crawl scheduling framework and subsequently a system architecture for a web
crawler subject to the framework. This paper presents the architecture of a web crawler with
dynamic scheduling support. The result of our preliminary performance evaluation made to the

proposed crawler architecture is also presented.

Key Words: Web Crawler, Dynamic Schéduling, Performance Evaluation

1. Introduction

A web crawler is a software that collects web
pages over the Internet. A crawler starts off its
operation by taking a set of seed URLs in a queue.
Retrieving a URL from the queue, the crawler
downloads the web page and then extracts URLs
from the content of the downloaded pages. These
URLs are again placed into the queue. By repeating
the above process, the crawler downloads web pages
until the queue becomes empty{3,7,89]. The pages
downloaded by a crawler are used by a number of

t This researcch was. supported by IRCUnternet Information
Retrieval Research Center) in Hankuk Aviation University.
IRC is a Kyounggi-Province Regional Research Center
designated by Korea Science and Engineering foundation
and Ministry of Science & Technology
School of Computer and Communication Engineering, Daegu
University
School of Computer and Communication Engineering,
Hankuk Aviation University

applications such as search engines and web cache.

To get a high performance, the design and
implementation of a crawler is usually made by using
muttiprocesses rather than a single process. Indeed to
meet the demand for high performance, it is essential
to choose the multiprocesses based approach. In
commercial sectors. there already exist a number of
multiprocess—-based web crawlers. Compelled to put
the highest priority on getting fast prototypes, almost
all the implementations of these crawlers hardly
consider the tradeoff which arises in the design space
of mutiprocess—based crawlers. Little effort are made
in the scientific research to analyze them and any
sound result is not yet published in open literature,

In the design of the multiprocess—based crawler, it
should be clearly addressed to ensure efficient crawl
scheduling(1,56]. Crawl scheduling is to assign a set
of URLs to each process for download[4]. The design
space for crawl scheduling is composed of a number

12

of alternatives with respect to centralized versus
distributed in the scheduling decision and static
versus dynamic in partitioning URLs assigned for
each crawl process to download.

Almost all the crawlers used for commercial search
engines are implemented via multiprocesses(2]. In
these crawlers, the task to download web pages as
well as the task to extract the URLs inside newly
downloaded web pages are respectively implemented
by wusing multiprocesses. Their operations are
controlled under a fork—join principle in their process
creation and coordination, In the stage of downloading
web pages, a set of downloader processes, each of
which is assigned with a disjoint set of URLs, are
created, i.e, forked and then each process conducts
downloading web pages assigned to itself. When all
the processes finish the download task, ie., joined
the crawler starts off the extraction stage controlled
in the fashion similar to the downloading stage. With
some auxiliary operations such as uniqueness
inspections, the above process are repeated in the
execution of the crawler.

From the crawl scheduling perspective, the above
model is regarded as taking a static scheduling
because a downloader process is assigned with a
URL set statically before its creation. The degree of
multiprocessing reflected by the number of processes
is set adequately for sufficient utilization of system
resources under which the crawler is executed.

A crawler with static crawl scheduling suffers
from low system utilization. The time spent for
downloading a web page shows a wide range of
variance affected by the target host on which the
Lo resides. This is due particularly to the network,
hest lvad as well es the page availability on the host.
Even though the same number of URLs is assigned
to each process, some processes thus finish the
download very lately than the others. It is clear that
the idle time caused by the unbalance of process
termination hinders the sufficient utilization of system
resources and causes to decrease the performance of
the crawler. Internally, it means that the degree of

multiprocessing set for the optimal system utilization
is not maintained under the static scheduling. To
overcome this situation, it is essential to explore a
dynamic crawl scheduling because any static crawl
scheduling scheme with reasonable complexity in its
implementation entails the idle time.

In our study, we focus on the comparative
performance between static anc “ynamic scheduling
schemes. Initially, we believe thz: dynamic crawl
scheduling presents a number of benefits; The
systern utilization becomes higher by reducing the
idle time caused from unbalanced workload which
occurs frequently under static craw! scheduling.

Our work contributes to the design of high
performance crawlers with the dynamic crawl

scheduling, more precisely as below:

- We identify the drawbacks o’ the static crawl
scheduling and suggest that some dynamic
scheduling support must be adopted to get higher
performance.

- We explore a dynamic crawl scheduling scheme
and provide a system architecture for a crawler with
the dynamic scheduling support.

- Even it is preliminary, we show, through the
experimental performance evaluation, the clue that
dynamic scheduling support is essential for high
performance crawlers,

The rest of the paper is organized as follows. In
section 2, the proposed crawler architecture is
explained. In section 3, the result from a preliminary
performance presented. Finally,
concluding remarks are provided.

evaluation is

2. Crawler Architecture with Dynamic
Scheduling Support

This section presents the proposed dynamic
scheduling scheme and its model architecture for a
crawler. The implementation issues and directions are
briefly discussed.

..13_

2.1 Dynamic Scheduling Scheme

The benefit of the mutiprocess—-based
implementation of a web crawler is to get higher
performance. To this end, it should be guaranteed
during the execution of the crawler to maintain the
degree of multiprocessing set to adequately
beforehand subject to the hardware resources of the
system. In earlier discussion, it is pointed out that the
inherent drawback of the static crawling scheduling
policy prevents the crawler from maintaining the
sufficient degree of multiprocessing set for the
platform hardware.

ﬂ Loadar
. Exiravior

p1
P2
p3

Figure. 1. Example dynamic
schedule

To guarantee a sufficient degree of multiprocessing
for crawling, we choose a dynamic scheduling
approach. The underlying rationale of our approach is
that at runtime any available process actively fetches
URLs from the queue whenever the queue is not
empty with URLs to download. It entails that the
processes in our dynamic scheduling scheme are
persistent during the whole rnuntime, while they keeps
busy downloading web pages as long as the queue is
not empty.

As an implementation model for the above dynamic
scheduling support, we use a shared memory used in
the general multiprocessing paradigm Queues
accessed by muiltiple processes are implemented by
the shared memory accessed via 'lock” and "release”
principles to guarantee mutual exclusive accesses.
Whenever a process finishes downloading a URL, it
takes a new URL from the queue while conforming to
the shared memory access.

2.2 Proposed Crawler Architecture

In the previous section, we discuss the rationale of
the dynamic crawl scheduling with a brief description
of the implementation model. The crawler with
dynamic scheduling capability has conceptually a
different architectural model from the crawler with
static scheduling.

{Shared Memoiy Segment)

Toload URL

Figure. 2. Conceptual model of the
proposed web crawler

Shasad Moiory Segmenis

feae] [Trame | [T tme] [omee]
1

Figure. 3. Architecture of the crawler with
the proposed dynamic scheduling
support

The conceptual architectural and operational model
for the crawler of our proposal is depicted in Figure
2. The loader module downloads web pages. The
extractor module takes off URLs inside a web page.
Different from fork—join multiprocess model as for
static crawl scheduling where the download and the
extractor module are implemented respectively via
multiple homogeneous processes, the loader and the
extractor module in the proposed model are merged in

14.

a single process which will be replicated during
runtime for multiprocessing. In the operational
perspective, the proposed model differ from the
fork—join model in that processes in the proposed
model are persistent until the end of crawling. The
communication between processes are made via
shared memories.

A detail description of our model is depicted in
Figure 3. Apart from the loader and the extractor
module, the uniqueness checker inspects if an
extracted URL is already downloaded. Finally the
load distribution module prepares and then allocates a
new URL set to each process of the loader module.
This architecture is composed of a set of shared
entities which include queues for URLs to download
and a system URL tree used for uniqueness
inspection. Processing entities are composed of a set
of homogeneous and persistent processes. These
processes have both the download and extraction
functions. This merge of the two functions in a
process is possible due to the capability of shared

<Table 1> Collection rate

Excution time

in) 10 20 30 40 45
Model
Dynamic
Scheduling 10,449]19,563|30,333(34,516 (36,022

(Collected pages

Static Scheduling
(Collected pages) 1805 | 2886 | 4391 | 5078 | 5713

Speedup 58 | 68 | 69 | 68 | 63

[]

T wy P P

“ N L 8l
FumEF P D - Nnwd P
T ERREE RRRET

Hed

Figure 4 Page count of each host

accesses to the system URL tree which is not

possible normal fork—join based static scheduling
crawlers.As described previously, the multiple
processes commmunicate and cooperate with one
ancther by using shared memory. All the queues
shared by more than one process are thus implement
in the shared memory accessed under the restriction
of mutual exclusion.

3. Preliminary Performance Result

This chapter presents the result of the performance
evaluation which are ongoing for more thorough
analysis.

<Table 2> Collection time

xcution time
Min) [2| 4] 6 6] 10l 12] 14! 16] 18] 20
Model
Dynamic
Scheduling 37| 6.0f 8.7/ 11.(13.3 14.4 165 184] 19.5[21."
(Collected pages
Static Scheduling . 120 145| 175 210
(Collected pages) 13, 27.5 47.(1 65.(] 80.(] 99.(0

Speedup 3.8] 46| 54| 69| 6.1| 6.9 7.3| 80} 89 9.7

' 1 i
I | I
i I I
I i I
I ‘ I
i :)
1 i I
) v '
I H '
1 . '
) ' '
' I v
' I I
' I i
' i '
') I
I) I
I 1 I
I 1 I
I H 1
') 1
i ‘)
I ' i
1 ' ‘
| ' '
| ' '
- ' '
T i t
) I ¢
‘ | |
. | I
‘ | I
« { I
1 i 1
I) '
I » i
I % i
I h '
I h '
I i '
i I v
) i '
1 I '
H '
: 2 N

Elapsed time {minute)
-

H
'
'
'
'
'
'
'
'
'
1
'
¢
'
'
'
'
'
'
'
'
‘
'
1
i
'
1
¢
'
'
'
'
'
'
'
'
)
)
'
'
'
y

NE :
1234567891011213141516171819202
Cdlectad docurrent court (unit : 1000)

Figure. 5. Comparison of collection time over
page counts

The performance metrics of crawlers consists
mainly of collection efficiency and collection rate.
Collection efficiency addresses how much completely
a crawler collects the target web pages. It is
represented by the percentage of the number of web
pages, that a crawler successfully downloaded, over
the number of target web pages to collect. Collection
rate expresses how fast a web crawler to collect the

15

targét web pages. This metric is represented by
average number of pages that a crawler collect
during a unit time. We focused on the collection rate
because the scope of this study is centered around
enhancing the collection speed.

The experimental setup is composed of a two
implementations of web crawlers: a fork—join based
multiprocess crawler with static scheduling and a
shared memory based nultiprocess crawler with
dynamic scheduling. Both implementations use the
same crawler kernel in order to ensure the reasonable
performance comparison. The code of the two
implementation are of with the same quality except
for the code relevant to crawl scheduling. The
platform hardware on which crawlers run is a Dell
PC server with two Pentium Il CPU of 733 MHz, 2
Gbytes main memory and 90 Gbyteshard disk array.
The network card in the server is 1 10M Ethernet
adaptor and connects to the external network with T3
bandwidth. The operating system of the server is
Linux RedHat 7.1.

In the experiment, we choose 21,000 URLs on 177
hosts from web sites of 17 universities as the target
web pages to be downloaded by crawlers. The
number of web pages of each host is depicted in
Figure 4. In the execution of web crawlers, the
number of processes which reflect the degree of
multiprocessing is set to 5. The collection rate of
each crawler is calculated by the arithmetic mean
value for the ten collection rates which are chtained
by executing a crawler ten times.

Figure 5 shows the result of the collection rate
respectively with dynamic scheduling support and
with static scheduling support. The average elapsed
times of the dynamically scheduled crawler and those
of the statically scheduled crawler are shown from

1K pages to 21K pages. The speedup of the -

dynamically scheduled crawler and those of the
statically scheduled crawler is 95 for collecting 21K
documents. This value indicates that the dynamic
scheduling support is crucial for high performance
web crawlers.

download rate (bytes/sec)

Pt P2 P4 P6E P8 P10 P12 P15 P2 P35 PX
Pracess caunt

Figure. 6. Raw download rate of the
proposed model

Figure 6 shows the raw download rates with
respect to the number of processes. The raw
download rate is measured by bytes per second
This figure presents how the degree of
multiprocessing of our model affects the over all
collection rate of the system. According to the figure,
as the number of processes increases from 1 to 8§
almost linear increase is shown for the raw download
rate. For the range of 8 to 20 processes, the raw
download rate does not increase. Findlly, the raw
download rate decrease when the number of
processes becomes larger than 20.

@

&

c)

©
244

documents
s R

o o

collection rate (
N

)

o

P P2 P4 P& P8 PI0 P12 P15 PH P2 FX

Figure. 7. Collection rate of the proposed
model

Figure 7 shows the document collection rate with
respect to the number of processes. The document
collection rate is measured by average number of
documents per second Provided the number of
documents collected by a crawler is sufficiently

16.

large,the raw download rate of a crawler reflects the
raw document collection rate, even if the size of
documents are differ one another. Indeed, the
document collection rate in figure 8 almost matches
with the raw download rate in figure 7. According to
the figure, as the number of processes increases from
1 to 8 almost linear increase is shown for the
collection rate, as does for the raw download rate.
For the range of 8 to 12 processes, the download
rate shows a slight increase, while it decrease very
slightly during 12 to 20 processes. Finally, the
collection rate decrease drastically when the number
of processes becomes larger than 20.

Overall, both the values of the download rate and
the collection rate indicates that the proposed model
get a reasonable speedup with respect to the increase
of the degree of multiprocessing. However, it also
indicates that that the degree of the multiprocessing
should be carefully adjusted subject to the resources
of the system on which the crawler is executed.

As previously pointed out the experiment result
presented in this paperis preliminary. We are
currently investigating the operational behavior of a
web crawler by analyzing the effect of timeout values
with respectto the HTTP connection for page
download, page head download, and page contents
download. Also, we are evaluating the histogram of
times spent for the major components internal to a
crawler such as time spent for network activities and
for the extraction of URLs as well as for uniqueness
inspection, etc. These results will guide us to
understand the internal behavior of the web crawler
and thus to provide us with more opportunities of
further optimization for higher performance.

4. Concluding Remarks

This paper presents a new approach to the
implementation of a multiprocess crawler. The core of
the study is to provide an efficient dynamic
scheduling support mechanism. To this end, we
propose a new web crawler architecture with a

shared memory based dynamic scheduling sﬁpport
The main benefit of this proposal is to guarantee the
degree of multiprocessing during the execution of the
crawler, which in trun yields higher collection rate.
This is due to the removal of the idle time which
occurs in the crawler model operated under the static

scheduling paradigm. The result of our preliminary
performance evaluation is very promising with
speedup of 95. This indicates that the dynamic
scheduling support is crucial for the high performance
web crawler. More through study on the performance
evaluation remains as further study.

References

[1] S. Chakrabarti, M. van den Berg, and B. Dom.
Focused crawling: A new approach to
topic—specific web resource discovery, In the 8th
International World Wide web Conference, 1999

[2] J. Cho, H Garcia-Molina. The evolution of the
web and the implications for an incremental
crawler. In proc. of the 26th international
conference on Very Large Databases, 2000

(3] J. Cho and H. Garcia-Molina. Synchronizing
database to improve freshness. In Proc of the
2000 ACM SIGMOD, 2000

[4] J. Cho and H. Garcia~Molina, and L. Page.
Efficient crawling through URL ordering.
Computers networks and ISDN systems,
30:161-172, 1998

[6] M. Diligenti, F. Coetzee, S. Lawrence, C. Giles,
and M. Gori. Focused crawling using context
graphs. In Proc. of the 26th international
conference on Very Large Databases, 2000

[6] A. Heydon and M. Najork Mercator: A
scalable, extensible web crawler. World Wide
web 2(4):219-229, December 1999

17

[7] L. Page and S. Brin. The anatomy of a
large-scale hypertextual web search engine. In
Proc. of the 7th World-Wide web Conference,
1998

[8] R Miller and K Bharat. SPHNIX: a framework
for creating personal, site~specific web crawlers.
In Proc. of the 7th World~Wide web Conference,
198

[9] Robots exclusion protocol.
http-//infor.webcrawler.
com/mak/projects/robots/exclusion.html

o] & ¥ (Yong-Doo Lee)

1975 Hankuk Aviation Univ.
(Communication. Eng. B.S.)

1982 Yeungnam University
(Computer Eng. M.S.)

1995 Hankuk Aviation Univ.
(Computer Eng. Ph.D.)

1982 ~ : Daegu University, Professor

Interest: GRID computing, Computer Architecture

A 4 8 (Soo-Hwan Chae)
1973: Hankuk Aviation Univ.
(Corrrrunication Eng. B.S.)
1985 Univ of Alabama
(Computer Science. M.S.)
1983 Univ of Alabama
(Cormputer Science. Ph.D)
19899 ~ : Hankuk Awviation Univ., Professor
Interest: Computer Architecture, Distributed Cormputing

18

