FIAAH RIS =FA #]8F A|35(2003. 9)

Modified Element Type ID Representation
for XML Structure Retrieval'

Seung-Hoon Jin, Soon-Cheol Kim, Jong-Wan Kim, Sin-Jae Kang

Abstract

In this paper, a representation method for structure information retrieval

without schema and DTD of XML documents is presented. While existing researches have
used DTD or schema to extract structure information, we extract structure information
directly from XML documents. Especially the well-formed XML documents are only
required to retrieve documents in the proposed method. Thus it can retrieve more general
and various documents easily compared to the existing XML retrieval systems requiring
DTD or schema. Experimental result indicates that the proposed method retrieves effectively
structure information of XML documents independently to DTD information.

Key Words: XML structure retrieval, Schema, DTD.

1. Introduction

With the development of web, the usage of web
is growing in various computing environments, and
the necessities storage of web
documents and search methods are increasing. In
W3C, XML (eXtensible Markup Language) was
proposed to overcome weak points and combine
advantages of HTML and SGML [1]. In the near
future, lots of web information or documents
following standard XML format are offered, and it
naturally needs a searching method to find
necessary information in XML documents.

of efficient

Since XML documents are written in
semi-structured form, the method based on word
frequency within documents used in
information retrieval engines is not suitable for
XML documents. It is reasonable to support
structure retrieval utilizing structure information of
XML documents [2]. Most of XML documents have

most

¥ This work was supported by 2000 Research Fund from Daegu
University.

their own DTD (Document Type Definition) or
XML schema to declare mark ups to be used in
XML documents, to validate the documents, and to
achieve document sharing between author and user.
XML schema represents shared vocabularies and
allows computers to carry out rnues made by
authors. They provide a means for defining the
structure, content and semantics of XML
documents. Recently a tool was released by J.
Rieger, which translated a DID into a XML
Schema [1]. The translator car map meaningful
DTD entities onto XML Schema constructs.
However, we found that many XML documents
do not have their own DTD or schema, because
there is no problem to display XML documents
without them and some people feel a difficulty to
write DTD files for complex XML documents. Thus
we propose structure information retrieval method
not only requiring no additional information such as
DTD or schema but also supporting keyword based
retrieval and structure based retrieval of XML
documents. We can reduce the element search time

61

significantly by simplifying unnecessary search for
entire elements in an element tree generated by
DTD.

In the next section, previous related works are
described. Section 3 presents a method for XML
structure retrieval without DTD. The experiments
to test the proposed method are provided in Section
4. Finally, conclusion is followed.

2. Previous research

Previaus warks to retrieve XML structure information
are described. In this research, representative
structure representation methods, ETID and LETID
methods are presented.

2.1 ETID (Element Type ID)

ETID identifying specific elements and
representing hierarchical information between
elements is a unique value assigned to each element
[3]. After the structure of DTD was logically
analyzed, ETID is assigned to each element in
DTD. As shown in Figure 1, ETID of section node
inherits "/3" of chapter node, its parent node, and
then it becomes "/3/1”.

para Image

Figure 1. Derivation of ETID from DTD

In Figure 1, an element tree with ETID as a
node value is constructed using actual elements and
virtual ones. When each ETID value is derived to
an identifier of the element tree, a serious recursion
problem may be occurred Recursion is occurred
when an element includes element itself like a
following example:

<!{ELEMENT section{num, title, para, section*)>

Although recursion does not actually exist in

XML document, it can be occurred during a step in
which an element tree with ETID as a node value
is constructed. This recursion is the first weakness
of ETID method to extract structure information of
XML documents.

When any node like the header node in Figure 2
has alternative components as its internal
representation, it is difficult to compose the element
tree. To solve the second problem, a method was
proposed which modified the process to allocate
ETID. The modified method gives an element node
ETID by first extracting EID (Element ID) from
DTD and then traversing XML documents [4].

<!ELEMENT memo (header, body) >
<!IELEMENT header ((to, from, date) |
(time, to, from))>

<!ELEMENT to (heading, name) >
<!ELEMENT from (heading, name) >

Figure 2. A case requring selection of node in DTD

Figure 3 shows the process to extract each EID
from a DTD file. After allocating EID to all
elements, each element inherits EID of its parent
node and then each ETID is allocated to represent
hierarchical information with traversing XML
documents. For example, the EID of class node is
"00, member node is a descendant of class node,
and the EID of the member node is "01” as shown
in Figure 3. Differently from the method [3], there
is no virtual node because it assigns ETID to each
element by traversing XML documents. The ETID
of the member node becomes "/00/01” by combining
"00" of parent node with "01” of its own EID [4].
This method extracts only EID without producing
hierarchical information with DTD. Therefore,
recursion is not happened and it just uses element
names in DTD.

._62_

Table 1. Structure information of LETID

Bemant Type £
Class 00
l-- Sample DTD -=>
<!ELEMENT Class (Member) > Member ot
<IELEMENT Member (Name, Gender,school,Age)> Name 02
<IELEMENT Name (#PCDATA) >
<JELEMENT Gender (#PCDATA) > Gender 03
<!ELEMENT schoot {e_school,m_school.h_school) > -
<IELEMENT e_school (#PCDATA) > school 04
<IELEMENT m_school (#PCDATA) > e_schoot 05
<!ELEMENT h_school (#PCDATA) >
<IELEMENT Age (#PCDATA) > m_school 06
h_schoot 07
Age 08

Figure 3. Extraction of EID from DID

It is possible to assimilate parent-child relationship
between elements with ETID information, but not
possible to know information for sibling nodes. To
know this sibling relation, order information
between sibling nodes, SORD (Sibling ORDer) and
another order information between same type
sibling nodes, SSORD (Same Sibling ORDer) are
used [3, 4]. SORD is the occurrence order of
elements having same parent and SSORD
represents the order between same typed elements
having same parent. Figure 4 shows an example
XML document represented by ETID method.

[Ew

/WOVOZ /m/uvos IOJ/OVO' /WOV@ /oo/ovm /WO!/UB /00/01/04 /WD|/08
mnan 72nn /|/3,/|/| 1A 2.2 2202121 /2/3/2/1 [rerren|
n_w.w
/BOIOIM /WOI/N/EB /WOVOVW /(xvovcwns /WDVNM /WOIID‘/O‘I
83N, NN [[N2 AN 7453 17171 22N S | 2V 11/ MU! YZ/Ar4]

Figure 4. An Example XML Document represented
by ETID

22 LETID

As the ETID method follows variable length
representation, the deeper node extends, the longer
its structure information becomes. To reduce this
kind of long structure information, the LETID
(Leveled Element Type ID) method using 8 bytes
fixed-size structure information is proposed [B].
Table 1 shows the meaning of each byte incident in
8 bytes structure information used in LETID.

Position Meaning Position Meaning

12 Depth of 56 Depth of
parent node current node

3 SORD of 7 SORD of
parent node current node

4 SSORD of 3 SSORD of
parent node current node

The information of every element is represented
by using 8 bytes, namely higher 4 bytes are used
for the information of parent node and lower 4
bytes are for the information of current node.
Figure 5 shows the LETID values extracted from
DTD.

Some problems happen here. As you have already
seen ETID extraction in section 2.1, it is difficult to
extract hierarchical information due to recursions
can be happened in DID. Also it is impossible to
find out the order between sibling nodes from DTD.

ement Type. | LETID
Class (0000000
<1-- Sample DTD -
<IELEMENT Class (Memper) > Membet 00000111
<HELEMENT Member (Name, Gender, school, Age)>
CELEMENT Namme (#PCDATA) > Narme oozt
<IELEMENT Gender (#PCDATA} > Gender 01110221
<!ELEMENT schaot (e.school,m_school,h_school) > oot 01110231
<IELEMENT e_school (#PCDATA) > sc
<IELEMENT m_schoot (#PCDATA) > e_schoo! 02310311
<IELEMENT h_schoot (#PCDATA) >
<IELEMENT Age (#PCDATA) > m_schoot 02310321
h_school 02310331
Age 01220241

Figure 5. Extraction of LETID From DTD

For example, two XML1 and XML2 files are all
valid XML documents according to DTD as shown
in Table 2. Since sub section node does not exist
in XML], it cannot assign its SORD and SSORD.
However, SORD of the first sub section node is "3"
and SSORD is "1”, and the second sub section node
has SORD of "4" and SSORD of "2" in XML2. As
you can see, this information is not provided by the
use of just DTD.

Table 2. XML documents according to DTD

DTD
<IELEMENT section(num, title, section*)>

XML1

<section>

<num></num>
<title><fitle>
</section>

XML2
<section>
<pum> ... </nurr>
<title> ... </title>
<section>... </section>
<section>...

basically 1 byte and total 7 bytes are needed.
However, we can increase corresponding node to 2
bytes if needed It means that it is possible to
process maximum 62(62 nodes even if we should
process an element tree having more than 62 nodes.

Table 3. METID structure information used in the
proposed method

3. Proposed XML Structure Retrieval

In this section, a method to directly extract
structure information from XML documents will be
presented. Differently from previous XML structure
retrieval methods, only well-formed XML
documents are required to obtain the goal.

3.1 METID (Modified Element Type 1D)

In this paper, the structure information of XML
document 1s represented by METID method
modifying ETID and LETID methods. In the case
of LETID method using fixed 8 bytes, there is a
limitation to represent the sibling node, because a
sibling node and its same named sibling node has 1
byte, respectively. Namely one byte in LETID can
represent maximum 62 nodes because it follows
single alphabet or digit string like
"0->'9->'A->'7 ->'a’ >’z [6l. However, in
case of Shakespeare’'s work [6)] used in our
experiments, it often happens that the number of
nodes is over 62. While the structure information in
ETID is represented by inheriting information of
parent node, the information quantity increases
rapidly according to the depth of tree. In also, the
ETID method needs an access to ETID, SORD, and
SSORD stored. On the other hand, the proposed
METID method follows single string but has no
problem over 62 nodes because it supports variable
field representation.

Table 3 shows structure information used by
METID method Each field in Table 3 takes

Chﬂdnode Attnbu Parent{ Parent
e (AC) (PS) (PSS)
D) , SORD SSORD
ST (o)) (CSS)

If we represent the second member node in
Figure 4 according to METID method given in Table
3, the node is represented by "/4/0/0//1/2/2". Depth
of parent node (PD) is not stored substantially in our
method Because CD (current node depth) minus 1 is
equal to PD, PD value is easily calculated in program
itself without taking a field.

To utilize unoccupied bytes which are taken by
LETID but unnecessary in METID, we allocated
two bytes for the number of child nodes and the
number of attributes in METID. However, if the
existing LETID should process more than 62 nodes,
it gets into the state of processing impossible as
mentioned beforehand.

32 METID structure information extraction

To implement the proposed method, we first read
XML documents and then created DOM (Document
Object Model) objects in Java language [7]. By
using DOM, XML document is represented in a
tree-structure form and it is possible to traverse
nodes by DFS (Depth First Search). We have
implemented the system using JAXP reference
implementation under Java environment [8]. The
reason why we chose DOM APIs is that they were

..64

easy to access each node by transforming XML
document to tree-structured object. DOM APIs help
us extract easily type and value of each node, and
know simply types of node such as Text_Node,
Element_Node, and Attribute_Node. As a result, it
becomes to extract structure information easily. In
case of processing documents in file mode without
using DOM, we must locate position of each node
with file pointer and type of each node, and then
store position information offset of each node [8l.
Figure 6 shows the result monitoring the process
that it performs structure indexing, content

indexing, and attribute indexing by tree traversal
after it transformed an XML document on the web
to DOM objects.

Figure 6. The process to draw structure information

The proposed system manages structure
information and index infametion extracted directly
from XML documents in DB. By retrieving DB in which
indexing were perfomed according to the order of
queries, it could perfam parent node retrieval, children
node retreval, and sibling node retdeval utilizing
structure information indexed previously.

3.3 Indexing information

In this paper, indexing information is divided into
content index, structure index, and attribute index
to show the processing capability of the proposed
METID method. Namely, content index is used to

do content or keyword retrieval like conventional
information retrieval systems. Structure index is
applied to retrieve effectively structure information
of XML documents. Thus, this information is the
essential part of the proposed method. Finally
attribute index is additionally chosen to process and
retrieve attributes in an element. These indexing
information are managed in each other table.

3.3.1 Content index

Content index information is configured based on
keywords so as to support contents retrieval. We
used Porter's stemmer algorithm [9] to find index
word or keyword and exclude stop words.

The index information as shown in Figure 7, is
used to process a query like "Find an element or
document including hamlet as a content”. As the
way to find documents or elements including
specific content, it makes a SQL statement using
input keyword and then shows retrieval resuit.

ikeyword [did [slementname ps ‘PS8 i

‘cs icS8 i) i
ihamlet 157 LINE 12 w 6 5 4
{hamlet 157 LINE 13 z 5 3 4
{hamlet 157 LINE 16 10 1 0 4
ihamiet 157 LINE 1b L1} 3 1 4
{hamiet 157 LINE ic 1T 2 1 4
© ihamlet 157 LINE ic 1T 5 4 a
thamlat 157 LINE 1e 1T C B 4
thamlet 157 LINE 1d 1w g 4 a

Figure 7. Information for content indexing

3.3.2 Structure index

Structure index information is composed of
element, the main component of structure
information, DID, METID, and contents. It is the
information used to process a query such as "Find
the 1st child node of element named speech”.

In this research, the ancestor node retrieval, the
descendant node retrieval, the sibling node retrieval,
the same typed sibling node retrieval, the child node
retrieval with specific node count, and the node
retrieval with specific attribute count are provided.
In the next section, we will present the experiment
to find child node retrieval with specific node count.

.65

¢t en
{SPEAKER 15660 0 4 10 g O ADRIANA g
i{SPEAKER 1560 0 410t O ADRIANA 0
{SPEAKER 1550 0 4 10 u 0 ANTIPHOLUS OF SYRACUSE 0
{SPEAKER 1560 0 4 10 w 0 ADRIANA 0
| SPEAKER 1550 0 410y 0 ANTIPHOLUS OFEPHESUS 0
| SPEAKER 1860 0 4 11 r 0 Servant 0
ISPEAKER 1560 0 4 11 u 0 PINCH 0
{SPEAKER 1550 0 4 11 v 0O ANGELO 0

Figure 8 Information for structure indexing

3.3.3 Attribute index

Attribute name becomes naturally the essential
information for attribute indexing. For mapping with
elements to be included attributes, DID and METID
are included in the table.

It processes queries such as the node retrieval
with specific attribute count and the node retrieval
with specific attribute value. To process attribute
query is similar to content query processing
including a specific keyword.

The following figure shows the information to
process query such as “Find the element which has
outbound-arrive-time as an element name and year
as an attribute name”. There is no element having
attributes in our test set [6l. So we made an
example XML document with attributes and tested
the document for attribute indexing.

attributename elementname text |did
year Qutbound-arrive-time | 1999 | 160
pS pSS cs css cl asord
0 0 3 0 2 4

Figure 9. Information for attribute indexing

3.4 Retrieval interface

We manage structure information and index
information together extracted directly from XML
documents. The proposed system retrieves database
tables according to the order of keyword or element
name in a query in which content index, structure
index, and attribute index have been already
constructed. Because we can represent structure
information in the form of the METID method and
utilize it, parent node, child node, and sibling node
retrieval could be also performed easily. Figure 10

displays query interface used in the proposed
system. For the rest retrieval operations except for
child node and parent node retrieval, we could make
an SQL sentence by using "AND" boolean operators
to be needed after "where” clause. For example,
when we select "Element Name” and input
"Chapter” as its value, and input “2” for "Sibling
Node”, an SQL - "Select * from Element where
ElementName="Chapter’ and SORD="2" - is made.

ETID-TEST

METI-TEST

JIE =S (BIO4 o1y e

NS | r Etlement Name : | -

HIOL 21 E (M= Areh)

T AaHes Y|
oSS Pt | 1T BN E e

7 &y Ysa Cattribute Name) [| RE A A (Attribute value)
L2280 by

oo N -
nage | of
Copyright Lias. Daegu Univ. 2003,

R

e

Figure 10. Retrieval interface to make a query

4. Experiments

We performed response time test using a query
about a problem finding the number of children
nodes. In this experiment, a query "Find the nodes
having two child elements among children nodes of
the speech element in the test document set” was
used to compare the response time of the proposed
METID method to that of the LETID method. Total
10 times experiments were performed to the two
methods, respectively. So we averaged the response
time values for 10 times experiments. To show the
superiority of the proposed method, we conducted
tests in the way of incrementing the number of test
documents. That is, test was performed with one
document at first. Next, two documents were
provided to the XML structure retrieval system and
then the test was conducted with three documents.
The experimental results in terms of response time
are shown in Table 4.

__66...

As you can see in Table 4, the proposed METID
method outperforms the existing LETID method in
terms of response time for the query finding its
children nodes even though we use only three
documents. The larger document set we use, the
much superior the evaluation results are to the
existing method. Especially in accordance with the
number of nodes in documents, the response time of
the LETID method is directly proportional to the
nunber of nodes in docurrent set. However the proposed
method makes little difference in tems of the response
time. Due to this reason, there is no problem to show
the superiarity of the proposed method with only the
experiments using small documents.

Table 4. Query response time according to the
number of children nodes

of # of # of Method
speech | retrieved
docs. nodes nodes LETID METID
1 605 311 2.8sec 0.4sec
2 1743 901 110.7sec 0.6sec
3 2293 1096 183.3sec 0.6sec

Since the document structure of each play in the
test set, Shakespeare’s work, is same and the
element name is same too, we should retrieve lots
of elements. There are 78 <ACT> nodes, 2234
<SPEECH> nodes, and 8037 <LINE> nodes in the
hamlet.xml document. After indexing total 39 XML
documents of 7.58MB size, about 89 seconds were
required to retrieve them in the proposed METID
method. However, when many queries were
presented continuously to DB Server by using the
LETID method, the phenomenon that shared
memory pool was fully occupied really came about.
Therefore out of memory situation was happened
under Java programming environment.

On the other hand, it is possible to process
queries such as "All nodes having X descendant
nodes” and "All nodes having Y attributes” by
giving only one query including child node count
and attribute count in the proposed METID method.

Differently from the METID method, the existing
methods wusing the ETID and the LETID
representation must retrieve every descendant node
of all nodes stored in DB to process the same
query, but it is almost impossible.

5. Conclusion

Many web contents over the Intermnet tend to be
written in the foom of XML due to superority of
XML format. XML is well utilized in many
fields like e-business, VoiceXML, WML, and so
on. In this paper, the proposed method extracts
structure information with only XML document
using DOM AFls and it performs more simple and
efficient retrieval than the existing stnchure
information retrieval algorithm like the LETID
method shown in Table 4.

As many people generate web contents easily due
to content authoring tools, the needs for efficient
document management increase but it becomes
difficult to retrieve important documents within
reasonable time. Lately Microsoft announced that
XML was chosen as its document format for the
next MS-Office version. The proposed method offers
content index, structure index, and attribute index for
supporting efficient retrieval, and therefore it could
manage XML documents more efficiently. Since we
chose MS SQL, one of conventional RDBs which have
been used in many reirieval engines as DBMS, it is
expected to be possible that XML content and
structure retrieval without significant changes in
existing general purposed search engines.

References

[1] W3C, http://www.w3.org/xml/,

[2] Sung-Geun Han, Jeong-Han Son, Jae~Woo Chang,
Zong—Cheol Zhoo, "Design and Implementation of
a Structured Information Retrieval System for
SGML. Documrent”, IEEE DASFAA Session 2A:
Document Retrieval, pp.81-83, 1998.

[3] Joong Kim, Implementation of XML document

67

structure retrieval engine, Master Thesis, Honam
University, 2001,6.

[4] Hyungil Kang, Yeonggil Choi, Jonsul Lee, Jaesu
Yoo, Kihyung Cho, "Design and Implementation
of a XML Repository System using RDBMS and
IRS,” Joumal of Korea Information Science
Society, Vol.7, No.1, pp.1-11, 2001.

(6] Younki Jo, Jeonggil Jo, Byungryul Lee, Yeonseol
Koo, "Representing and retrieving the structured
information of XML documents,” Journal of Korea
Information Processing Society, Vol8-D, No4,
pp.361-366, 2001.

[6] Jon Bosak, "Shakespeare’s work”, http/www.

guy—murphy.easynet.co.uk.

[7] Seung-Hoon Jin, Indexing and Retrieval System
of Structural Information in XML Documents
regardless of DTD, Master Thesis, Daegu
University, 2003,2.

[8] Yunmyeong Kim, JAVA Programming for XML,
Ganamsa, 2002,

[9] Wiliam B. Frakes, Ricardo DBaeza-Yates,
Information Retrieval Data Structure &
Algonthms, Prentice-Hall, 1992.

A % F(Seung-Hoon Jin)

20019 o FeAStE AFRERR
e 29 (3D
20034 AT Aol AF

B AL FS BRI
, 20034 ~ 55 o A+F
AFA%, ARG, XML, AR

w4 o}

o0
Ay

A (Soon-Cheol Kim)

1990 d A &hsta FFe 3t
ExdCiy

1992 MEdista g
AFHTHG 4
(F84Ah

1993 Medista digte
ATHTE} 4
(F3Ah

1998 A gtidte AFHIIeTEd T4 SEET4

1999 ~dA dTdsty FFHPREST zas

TR EFAA, BAANEE, HEl oA 2d

B £ ¢ (Jong-Wan Kim)

19873 Ag&oista AFE 337
EC1IZN))

19893 AMgdigw vty
A5H 38 £4
(F3AAH

19943 AM-g&dign sty
AFETEgH £
(F8tekAl)

1953 ~8A) di7tdjgta AFHHRIEE Fuf

1999td ~2000%d == U. of Massachusetts Post Doc.

A Eol: ATPoolHE, HAANz"H, JAFATF,

ARAN F

Z A A (Sin-Jae Kang)

195 ZAEdista AFH T8k
A (A

19973 &3 oistn ot
AFHTETH &4
(T A}

20028 EgF AR gy
AFHFTs £
(F8HakA})

19973 ~1998'd SK Telecom AEB7]&ATY

FAdA+4
20023 dA dFdizta ARFAFER AR
T EoF : AN AR 2 F L} VA S 5

