ESSENTIAL SPECTRA OF \(w \)-HYPONORMAL OPERATORS

HYUNG KOO CHA, JAE HEE KIM, AND KWANG IL LEE

Abstract. Let \(K \) be the extension Hilbert space of a Hilbert space \(H \) and let \(\phi \) be the faithful *-representation of \(B(H) \) on \(K \). In this paper, we show that if \(T \) is an irreducible \(w \)-hyponormal operators such that \(\ker(T) \subset \ker(T^*) \) and \(T^*T - TT^* \) is compact, then \(\sigma_e(T) = \sigma_e(\phi(T)) \).

1. Introduction

Let \(H \) be a complex Hilbert space. The *-algebra of all bounded linear operators on \(H \) is denoted by \(B(H) \). For an operator \(T \) in \(B(H) \), we denote the spectrum, the point spectrum, the approximate point spectrum and the essential spectrum by \(\sigma(T) \), \(\sigma_p(T) \), \(\sigma_{ap}(T) \), and \(\sigma_e(T) \), respectively. A complex number \(z \) is a normal approximate propervalue of \(T \) if there exists a sequence \(\{x_n\} \) of unit vectors such that \((T - z)x_n \to 0 \) and \((T - z)^*x_n \to 0 \). The set of all normal approximate propervalue is called the normal approximate spectrum of \(T \) and it denote by \(\sigma_{na}(T) \).

Aluthge [1] first introduced \(p \)-hyponormality for operators; An operator \(T \) is said to be \(p \)-hyponormal for \(p \in (0, 1] \) if \((T^*T)^p \geq (TT^*)^p \). If \(p = 1 \), \(T \) is called hyponormal and if \(p = \frac{1}{2} \), \(T \) is called semi-hyponormal. It is well known that a \(p \)-hyponormal operator is a \(q \)-hyponormal operator for \(0 < q \leq p \) by the Löwner-Heinz theorem.

Let \(T = U|T| \) be the polar decomposition of \(T \), where \(U \) is a partial isometry, \(|T| \) is a positive square root of \(T^*T \) and \(\ker T = \ker |T| = \ker U \). Aluthge [1] introduced the operator \(\overline{T} = |T|^{1/2}U|T|^{1/2} \), which is called the Aluthge transformation of \(T \).

Received by the editors June 27, 2003 and, in revised form, November 12, 2003.
2000 Mathematics Subject Classification. 47B20, 47A10.
Key words and phrases. \(w \)-hyponormal, approximate point spectrum, essential spectrum, irreducible operator.
This paper was supported by research fund of Hanyang University, Seoul, Korea, 2002.

Aluthge & Wang [2] first introduced a new operator that an operator T is said to be w-hyponormal if $|\bar{T}| \geq |T| \geq |T^*|$. Evidently, if T is w-hyponormal, then \bar{T} is semi-hyponormal.

They proved that if an operator T is p-hyponormal, then it is w-hyponormal and also show the following results:

Theorem 1.1 (Aluthge & Wang [4]).

1. An operator T is w-hyponormal if and only if
 \[
 |T| \geq (|T^*|^p |T|^{q/2})^{1/a} \quad \text{and} \quad |T^*| \leq (|T^*|^p |T|^{q/2})^{1/b}.
 \]

2. If T is a w-hyponormal operator, then $\sigma_{ap}(T) - \{0\} = \sigma_{na}(T) - \{0\}$.

Fujii, Jung, S. H. Lee, M. Y. Lee & Nakamoto [11] introduced a new class $A(p, q)$ of operators that for $p, q > 0$, an operator T belongs to $A(p, q)$ if it satisfies an operator inequality

\[
(|T^*|^q |T|^{2p} |T^*|^q)^{\frac{1}{p+q}} \geq |T^*|^{2q}.
\]

Recently, Ito & Yamazaki [12] introduced a new class $wA(p, q)$ of operators that for $p, q > 0$, an operator T belongs to $wA(p, q)$ if it satisfies an operator inequalities

\[
(|T^*|^q |T|^{2p} |T^*|^q)^{\frac{1}{p+q}} \geq |T^*|^{2q} \quad \text{and} \quad |T|^{2p} \geq (|T|^p |T^*|^{2q} |T|^p)^{\frac{p}{p+q}}.
\]

In Ito & Yamazaki [12], they obtained the following results:

Theorem 1.2 (Ito & Yamazaki [12]). For each $p > 0$ and $q > 0$, the following assertions hold:

1. Class $A(p, q)$ coincides with class $wA(p, q)$.
2. Class $A(\frac{1}{2}, \frac{1}{2})$ coincides with the class of w-hyponormal operators (i.e., class $wA(\frac{1}{2}, \frac{1}{2})$).

An operator T is said to be reducible if it has a nontrivial reducing subspace. If an operator is not reducible, then it is called irreducible.

Cha [6] constructed an extension K of \mathcal{H} by means of all weakly convergent sequences in \mathcal{H} and the Banach Limit, and obtained the faithful $*$-representation ϕ of $B(\mathcal{H})$ on K.

In this paper, using the faithful $*$-representation ϕ, for an irreducible w-hyponormal operator T with $\ker(T) \subset \ker(T^*)$, we investigate the relation between the essential spectrum of T and the essential spectrum of $\phi(T)$.
2. The main Theorem

Let $C^*(T)$ be the C^*-subalgebra of $B(\mathcal{H})$ generated by a single operator T and identity. By a character on a C^*-algebra we mean a multiplicative linear functional. If \mathcal{A} is a C^*-algebra with identity, then its commutator ideal is the closed ideal generated by the commutator $ab - ba$ for $a, b \in \mathcal{A}$.

Bunce [5] established a kind of the reciprocity among the character of single generated C^*-algebra and the approximate spectra of the generators and he proved the following theorem:

Theorem 2.1 (Bunce [5]). If T is a hyponormal operator, then for all $\lambda \in \sigma_{ap}(T)$ there is a character ψ on the C^*-algebra $C^*(T)$ such that $\psi(T) = \lambda$.

Enomoto, Fujii & Tamaki [10] was generalized Bunce's result as following:

Theorem 2.2 (Enomoto, Fujii & Tamaki [10]). A complex number $\lambda \in \sigma_{na}(T)$ if and only if there is a character ψ of $C^*(T)$ such that $\psi(T) = \lambda$.

Let $C^*(T_i : i \in \Gamma)$ be the C^*-algebra generated by $\{T_i : i \in \Gamma\}$ and the identity operator, and let \mathcal{I} be the commutator ideal of $C^*(T_i : i \in \Gamma)$.

S. G. Lee [13] obtained that the quotient algebra $C^*(T_i : i \in \Gamma)/\mathcal{I}$ is isometrically *-isomorphic to $C(\sigma_n(T_i : i \in \Gamma))$, where $\sigma_n(T_i : i \in \Gamma)$ is the joint normal spectrum of $\{T_i : i \in \Gamma\}$.

By Theorem 1.1 and Theorem 2.2, we have the following result:

Corollary 2.3. Let T be a w-hyponormal operator with $\ker(T) \subset \ker(T^*)$. Then $\lambda \in \sigma_{ap}(T)$ if and only if there is a character ψ of $C^*(T)$ such that $\psi(T) = \lambda$.

If $\Phi_\mathcal{A}$ is the set of all character on \mathcal{A} and M is the commutator ideal of \mathcal{A}, then $M = \bigcap\{h^{-1}(0) : h \in \Phi_\mathcal{A}\}$ and $\Phi_\mathcal{A}$ is the maximal ideal space of \mathcal{A}/M. With this statement, we have $\mathcal{A}/M \cong C(\Phi_\mathcal{A})$ under the Gel'fand transform, $a + M \rightarrow \hat{a}$, where $\hat{a}(h) = h(a)$ for a in \mathcal{A} and h in $\Phi_\mathcal{A}$ (Conway [8, 9]).

Lemma 2.4. If an operator T is w-hyponormal with $\ker(T) \subset \ker(T^*)$, there is an isometric *-isomorphism of $C^*(T)/M$ onto $C(\sigma_{ap}(T))$, where $A + M$ is mapped to the function z.

Proof. Let $\tau : \Phi_{C^*(T)} \rightarrow \sigma_{ap}(T)$ be defined by $\tau(\psi) = \psi(T)$. By Corollary 2.3 this map is surjective. If $\psi(T) = \psi'(T)$ for $\psi, \psi' \in \Phi_{C^*(T)}$, then $\psi = \psi'$, since T is
generator of $C^*(T)$, and ψ, ψ' are continuous on $C^*(T)$. So τ is injective. It is also easy to see that τ is continuous. Since $\Phi_{C^*(T)}$ is compact, τ is a homeomorphism. Thus the map $\tau^\#: C(\sigma_{ap}(T)) \to C(\Phi_{C^*(T)})$ defined by $\tau^\#(f) = f \circ \tau$ is an isometric $*$-isomorphism. We define a map $\rho : C(\sigma_{ap}(T)) \to C^*(T)/M$ so that the following diagram commutes:

$$
\begin{array}{ccc}
C^*(T)/M & \xrightarrow{\gamma} & C(\Phi_{C^*(T)}) \\
\downarrow{\rho} & & \downarrow{\tau^\#} \\
C(\sigma_{ap}(T))
\end{array}
$$

where the Gel'fand transform $\gamma : C^*(T)/M \to C(\Phi_{C^*(T)})$ is an isometric $*$-isomorphism. Then ρ is clearly an isometric $*$-isomorphism. □

Cha [6] introduced an extension K of H by means of all weakly convergent sequences in H and the Banach Limit, and obtained the faithful $*$-representation ϕ of $B(H)$ on K.

In order to show our results, we use the following propositions.

Proposition 2.5 (Cha [6, 7]). There exists a faithful $*$-representation ϕ of $B(H)$ on K with the following properties:

1. $\|\phi(T)\| = \|T\|$.
2. $\sigma(T) = \sigma(\phi(T))$.
3. $\sigma_{ap}(T) = \sigma_p(\phi(T))$.
4. If T is a compact operator on H, then so is $\phi(T)$ on K.
5. If T is an irreducible operator on H, then so is $\phi(T)$ on K.

Remark. The Proposition 2.5 (5) does not mean a representation of a C^*-algebra is irreducible. It implies the concept of a simple irreducible operators.

Proposition 2.6 (Cha [7]). We have the following properties.

1. The C^*-algebra $C^*(T)$ is isometrically $*$-isomorphic to the C^*-algebra $C^*(\phi(T))$.
2. If M is the maximal ideal of $C^*(T)$, then $\phi(M)$ is the maximal ideal of $C^*(\phi(T))$.
3. Let $\Phi_{C^*(T)}$ and $\Phi_{C^*(\phi(T))}$ be the maximal ideal space of $C^*(T)$ and $C^*(\phi(T))$, respectively. Then $\Phi_{C^*(T)}$ and $\Phi_{C^*(\phi(T))}$ are isometrically isomorphic.

Proposition 2.7 (Cha [7]). We have the following properties.

1. $M = \bigcap\{f^{-1}(0) : f \in \Phi_{C^*(T)}\} \cong N = \bigcap\{h^{-1}(0) : h \in \Phi_{C^*(\phi(T))}\}$.
2. $C^*(T)/M \cong C^*(\phi(T))/N$.

Related to above propositions, we obtained the following results for \(w \)-hyponormal operators.

To show this property, we need the following proposition:

Proposition 2.8. If an operator \(T \) is \(w \)-hyponormal, then so is \(\phi(T) \).

Proof. Since operators in \(A(\frac{1}{2}, \frac{3}{2}) \) is \(w \)-hyponormal, we need only to show that

\[
(|\phi(T)^*|^{1/2}|\phi(T)||\phi(T)^*|^{1/2})^{1/2} \geq |\phi(T)^*|.
\]

It is easily check that \(|\phi(T)| = \phi(|T|) \) and \(\phi \) preserves the positive property. Thus we have

\[
|\phi(T)^*| = \phi(|T^*|) \\
\leq \phi((|T|^*|^{1/2}|T||T^*|^{1/2})^{1/2}) \\
= (|\phi(T)^*|^{1/2}|\phi(T)||\phi(T)^*|^{1/2})^{1/2}.
\]

Therefore,

\[
(|\phi(T)^*|^{1/2}|\phi(T)||\phi(T)^*|^{1/2})^{1/2} \geq |\phi(T)^*|.
\]

Thus, \(\phi(T) \) is \(w \)-hyponormal. \(\square \)

With the notation of Proposition 2.5, Proposition 2.7 and Lemma 2.4, we have the following:

Theorem 2.9. If \(T \) is a \(w \)-hyponormal operator with \(\ker(T) \subset \ker(T^*) \), then

\[
C^*(T)/M \cong C^*(\phi(T))/N \cong C(\sigma_p(\phi(T))).
\]

We need the following proposition in order to give proofs of Theorem 2.11 and Corollary 2.12.

Proposition 2.10 (Conway [9]). If \(T \) is an irreducible operator such that \(T^*T - TT^* \) is compact, then the commutator ideal \(M \) of \(C^*(T) \) is \(K(\mathcal{H}) \), where \(K(\mathcal{H}) \) is the ideal of all compact operators on \(\mathcal{H} \).

We have the results for irreducible \(w \)-hyponormal operators.

Theorem 2.11. If \(T \) is an irreducible \(w \)-hyponormal operators such that \(\ker(T) \subset \ker(T^*) \) and \(T^*T - TT^* \) is compact, then

\[
\sigma_{ap}(T) = \sigma_e(T) \text{ and } \sigma_p(\phi(T)) = \sigma_e(\phi(T)).
\]
Proof. The fact that $\sigma_{ap}(T) = \sigma_e(T)$ follows immediately from Proposition 2.10 and Lemma 2.4. The second assertion is clear from Proposition 2.10 and Proposition 2.5. \hfill \Box

It is easy to see that if T is a Fredholm operator on \mathcal{H}, then so is $\phi(T)$ on \mathcal{K}, and so $\sigma_e(\phi(T)) \subset \sigma_e(T)$ for any operator T.

Corollary 2.12. If T is an irreducible w-hyponormal operators such that $\ker(T) \subset \ker(T^*)$ and $T^*T - TT^*$ is compact, then $\sigma_e(T) = \sigma_e(\phi(T))$.

REFERENCES

1. A. Aluthge: On p-hyponormal operators for $0 < p < \frac{1}{2}$. Integral Equation and Operator Theory 13 (1990), no. 3, 307–315. MR 91a:47025

12. M. Ito & T. Yamazaki: Relation Between Two Inequalities $(B^{\frac{p}{2}}A^{p}B^{\frac{p}{2}})^{\frac{1}{p}} \geq B^{p}$ and $A^{p} \geq (A^{\frac{p}{2}}B^{p}A^{\frac{p}{2}})^{\frac{1}{p}}$ and their Applications. Integral Equation Operator Theory 44 (2002), no. 4, 442–450. MR 2003h:47032

(H. K. Cha) Department of Mathematics, Hanyang University, 17 Haengdang-dong, Seong-dong-gu, Seoul 133-791, Korea
Email address: hkcha@hanyang.ac.kr

(J. H. Kim) Department of Mathematics, Hanyang University, 17 Haengdang-dong, Seong-dong-gu, Seoul 133-791, Korea

(K. I. Lee) Department of Mathematics, Hanyang University, 17 Haengdang-dong, Seong-dong-gu, Seoul 133-791, Korea
Email address: haesanae@dreamwiz.com