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GENERALIZED VECTOR VARIATIONAL-TYPE INEQUALITIES
FOR SET-VALUED MAPPINGS

SUK-JIN LEE AND BYUNG-S00 LEE

ABSTRACT. In this paper, we consider the existence of the solutions to the gen-
eralized vector variational-type inequalities for set-valued mappings on Hausdorff
topological vector spaces using Fan’s geometrical lemma.

1. INTRODUCTION AND PRELIMINARIES

A vector variational inequality in a finite-dimensional Euclidean space was first
introduced by Giannessi [5], which is the vector-valued version of the variational
inequality of Hartman & Stampacchia [6]. Over the past two decades, various vector
variational inequalities and their applications have been intensively studied by Chen
(3], Konnov & Yao (7], B. S. Lee & G. M. Lee [9], B. S. Lee & G. M. Lee & Kim
(10, 11}, B. S. Lee & S. J. Lee [12, 13], G. M. Lee, Kim & B. S. Lee [14, 15], G. M.
Lee, Kim, B. S. Lee & Cho [16], G. M. Lee, Kim, B. S. Lee & Yen [17], G. M. Lee,
B. S. Lee, Kim & Chen [18], Siddiqi, Ahmad & Khan [19], Siddigi, Ansari & Ahmad
[20], Siddigi, Ansari & Khaliq [22], Yu & Yao [23] and others.

Ansari [1] introduced and considered vector variational-like inequalities. Since
then, B. S. Lee & G. M. Lee [9], B. S. Lee, G. M. Lee & Kim [11] and Siddiqi,
Ansari & Ahmad [20] have been studied various vector variational-like inequalities.

B. S. Lee & S. J. Lee [12, 13] introduced and considered vector variational-type
inequalities, which was generalized form vector variational-like inequality.
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Recently, Siddiqi, Ansari & Khan [21] considered scalar generalized variational-
type inequalities for set-valued mappings with monotonicity assumption on Banach
spaces.

Our motivation for this paper is to consider generalized vector variational-type
inequalities for set-valued mappings without the monotonicity assumption on Haus-
dorft topological vector spaces. In the proof of our main theorem, we use Fan’s
geometrical lemma Fan [4], which has been applied to variational problems, comple-
mentarity problems, game theory, and so on.

Let X,Y be topological vector spaces, K a nonempty subset of X and N a
nonempty subset of L(X,Y), where L(X,Y) is the space of all linear continuous
operators from X to Y. Let M : K x N = L(X,Y),0 : K x K - X and n :
K x K — Y be mappings, and {C(z) : ¢ € K} a family of closed convex cones in
Y. A partial order <¢(;) in Y with the closed convex cone C(z) is defined as for
yLY2 €Y,

Y1 <¢(z) Y2 if and only if yo —y1 € C(z).

Definition 1.1 (Kuroiwa [8]). Let K be a convex subset of X. A mapping f : K —
Y is convex if for every z1,z2 € K and ¢t € (0, 1),

f(tzy + (1 = t)z2) <c(e) tf(z1) + (1 — 1) f(22),
e, tf(z1) + (1 —t)f(ze) — ftz1 + (L — t)z2) € C(z).

We consider the following Generalized Vector Variational-Type Inequality Prob-
lem (GVVTIP):

(GVVTIP). Find zg € K such that for all y € K there exists ug € T'(zg) satisfying

{M (20, u0),0(y, a)) + n(z0,y) — n(zo, z0) ¢ — int C(wo),

where (M (2o, uo), 8(y, o)) denotes the evaluation of M (xo,uo) at 6(y, zo).
Now, we introduce the following famous Fan’s geometrical lemma.

Lemma 1.1 (Fan [4]). Let K be a nonempty compact convex subset of a Hausdorff
topological vector space X. Let A be a subset of K x K satisfying the following
conditions;

(1) for each z € K, (z,x) € A,

(2) for each fized y € K, the set Ay :={z € K : (z,y) € A} is closed in K,

(3) for each fized z € K, the set Ay :={y € K : (z,y) ¢ A} is convez in K.
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Then there ezists an zo € K such that {zo} x K C A.

Definition 1.2 (B. S. Lee, G. M. Lee & Kim [11]). Let X,Y be topological vector

spaces and T : X — 27 a set-valued mapping.

(1) T is said to be upper semicontinuous (briefly, u.s.c.) at o € X if for any open
neighborhood N containing T'(zg) there exists a neighborhood M of zg such
that T(M) C N. T is said to be u.s.c. if T is u.s.c. at every point z € X.

(2) T is said to be closed at z € X if for each nets {z,} converging to = and {ya}
converging to y such that y, € T(z,) for all a, we have y € T(z). T is said to
be closed if it is closed at every point z € X.

Lemma 1.2 (Aubin & Cellina [2]). Let X,Y be topological vector spaces and T :

X = 2Y be a set-valued mapping.

(1) If K is a compact subset of X, and T is u.s.c. and compact-valued, then T(K)
18 compact.

(2) If T is u.s.c. and compact-valued, then T is closed.

2. MAIN RESULTS

Now we consider the existence theorem of solution to (GVVTIP).

Theorem 2.1. Let X be a Hausdorff topological vector space, Y a topological vector
space. Let K be a nonempty compact convez subset of X, N a nonempty subset of
L(X,Y) and {C(z) : z € K} a family of closed convezr cones in' Y. Let a set-valued
mapping W : K — 2 defined by W(z) = Y ~ {=int C(z)} has a closed graph.
Assume that M : K x N = L(X,Y) is a continuous mapping, 0 : K x K = X is a
mapping such that x — 6(z,-) is conver, T — 6(-,z) is continuous and 6(z,z) = 0,
andn : K x K = Y is a continuous mapping such that x — n(-,z) is convez for
allz € K. Let T : K — 2N be an w.s.c. mapping with compact values. Then
(GVVTIP) is solvable.

Proof. Let

A= {(z,y) € K x K : there exists u € T'(z) such that
(M(z,u),6(y, ) +n(z,y) — n(z,z) ¢ —int C(z)}

then A is nonempty.
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For each fixed y € K,
Ay ={z € K:(z,y) € A}
= {z € K : there exists u € T(z) such that
<M($1 u)a 0(?/7 ZB)> + 77(37, y) - 77(53, 13) ¢ — int C(SB)}

is closed in K. Indeed, let {5} be a net in Ay such that xy — zo. Since z) € Ay,
we have there exists uy € T(x)) such that

(M(zx,un), 0(y,22)) + n(za, y) — n(Tr, 22) € W(za).

Since T(K) is compact, we can assume that there exists ug € T'(zo) such that
uy — ug. By Lemma 1.2 (2), T is closed and hence ug € T(zp). By assumption of
M, 8 and n, and W has a closed graph. Thus we have there exists ug € T'(xp) such
that

<M($L'0, uO)a B(y, $0)> + 77(»’30, y) - 77(370) 1130) ¢ —int C(:EO)
Hence z¢ € Ay, Ay is closed in K.
On the other hand, for each fixed z € K,
A ={yeK:(z,y) ¢ A}
= {y € K : for all u € T(z){M(z,u),0(y,z)) + n(z,y) — n(z,z) € —int C(z)}

is convex in K. In fact, let y;,y2 € A; and t € (0,1), we have for all z € K and
u € T(z),

[(M(z,w), 001 + (1 = t)yz, 2)) + 0z, tyr + (1 = t)y2) — n(z, z)]
<c(z) t[(M(z,u),0(y1,2)) +n(z, 1) — 1(z, )]
+ (1 —t) [(M(z,v), 0(y2,2)) + n(z, y2) — n(z, z)] .
That is,
t [(M(z,w),0(y1,2)) + (2, y1) — n(z, 2)]
+ (1—t) [(M(z,u),0(y2,z)) + n(z,y2) - n(z, z)]
— [(M(z,),0(t1 + (L = t)ya, 2)) + 1z, tyr + (1 = t)y2) — n(z, 2)] € C(z).
Since (M<(z, u), 0(y1,z))+n(z,y1)—n(z,z) € —int C(z) and (M(z,u),0(y2,2))+
n(z,y2) — n(z,z) € —int C(z), we have

(M(z,u),8(ty1 + (1 — t)y2,2)) + n(z, ty1 + (1 — t)ye) — n(z, z) € —int C(z).
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Hence ty; + (1 — t)y2 € Az, A; is convex in K. By Lemma 1.1, there exists
zo € K such that {zo} x K C A. That is, there exists 290 € K such that for all
y € K there exists ug € T'(zp) satisfying

(M (0, u0), 0(y, zo)) + n(z0, y) — 1(z0, o) ¢ int C(zo).
O

If we take M(z,u) = v and n(z,z) = 0, then we obtain B. S. Lee & G. M. Lee
[12, Theorem 2.1} as a corollary.

When X is a reflexive Banach space, Y = R, L(X,Y) = X* and C(z) = R, we
obtain Siddiqi, Ansari & Khan [21, Theorem 2.1] as a corollary.

In Theorem 2.1, we considered K to be a nonempty compact convex subset of
a Hausdorff topological vector space X. But in the following theorem, we do not

assume that K is compact.

Theorem 2.2. Let X be a Hausdorff topological vector space, Y a topological vector
space. Let K be a nonempty convex subset of X, N a nonempty subset of L(X,Y)
and {C(z) : z € K} a family of closed convex cones in Y. Let a set-valued mapping
W : K — 2 defined by W(z) =Y \ {~intC(z)} has a closed graph. Assume that
M : K x N — L(X,Y) is a continuous mapping, § : K x K — X is a mapping
such that T — 6(z,-) is convez, x — 0(-,z) is continuous and 6(z,z) = 0, and
n: K x K — Y is a continuous mapping such that x — n(-,x) is convez for all
z € K. Let T : K — 2V be an u.s.c. mapping with compact values. And the
following coercive condition is satisfied;

there exists a nonempty compact convex subset D of K and z € D such that for all
z € K \ D there ezists u € T(z) satisfying

(M(z,u),0(z,2)) + n(z, 2) — n(z,z) € —int C(z).
Then (GVVTIP) is solvable in D.
Proof. For each y € K,
By := {z € D :there exists u € T(z)such that
(M(z,u),0(y,2)) +n(z,y) - n(z,z) ¢ —int C(z)}
is nonempty. And for each y € K,
Cy := {z € K :there existsu € T(z) such that
(M(z,u),0(y,2)) +n(z,y) - n(z,z) ¢ —int C(z)}
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then Cy is closed in K by the same method in the proof of Theorem 2.1. Since D is
closed in X, By = D N Cy is closed subset of D. It is clear that (GVVTIP) has a

solution in D if (| By # @. For this, it is sufficient to prove the family {B, : y € K'}
yeK
has the finite intersection property. Let y1,2,...,yn be arbitrary finite elements of

K and let Dy, = co(D U {y1,¥2,---,Yn}), where co denote convex hull. Then D}, is
a compact convex subset of K. By Theorem 2.1, there exists g € Dy, such that for
all y € Dy, there exists ug € T(xg) satisfying

(2.1) (M (z0,u0),8(y,20)) + n(zo,y) — 120, xo) ¢ — int C (o).

It can be shown that ¢ € D. In fact, if zo ¢ D then by the coercive condition,
there exists z € D such that for such zg € K \ D, there exists ug € T'(zo) satisfying

(M (zo,u0),0(2,z0)) + n(xo, 2) — (20, x0) € —int C(zo),

which contradicts (2.1), when z = y. In particular,zg € Cy, for all y;. In fact, if
ro ¢ Cy, for some y; then for all ug € T'(zo),

(2.2) (M (zo,v0), 8(ys, 20)) + n(z0,ys) — n(xo, zo) € — int C(xo).
But since y; € Dy, we can choose ug € T(zg) such that

(M (zo,v0), 0(ys, 20)) + n(zo, ¥i) — n(zo, o) ¢ —int C(zo),
which contradicts (2.2). Hence zg € By, for i = 1,2,...,n. Therefore

() By # 2.

=1
Hence, the family {By : y € K} has the finite intersection property, so there exists
zg € D such that for all y € K there exists ug € T'(xg) satisfying

(M (20, u0),0(y, 0)) + n(z0,y) = n(@0, o) ¢ — int C (o).
|

If we take M(z,u) = u and n(z,z) = 0, then we obtain B. S. Lee & G. M. Lee

(12, Theorem 2.3] as a corollary.
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