ON TWO-DIMENSIONAL LANDSBERG SPACE
WITH A SPECIAL \((\alpha, \beta)\)-METRIC

IL-YONG LEE

ABSTRACT. In the present paper, we treat a Finsler space with a special \((\alpha, \beta)\)-
metric \(L(\alpha, \beta) = c_1\alpha + c_2\beta + \alpha^2/\beta\) satisfying some conditions. We find a condition
that a Finsler space with a special \((\alpha, \beta)\)-metric be a Berwald space. Then it is shown
that if a two-dimensional Finsler space with a special \((\alpha, \beta)\)-metric is a Landsberg
space, then it is a Berwald space.

1. INTRODUCTION

In the Cartan connection \(CT\), a Finsler space is called Landsberg space, if the
covariant derivative \(C_{hijk}\) of the \(C\)-torsion tensor \(C_{hi} = \partial_h\partial_i\partial_j(L^2/4)\) satisfies
\(C_{hijk}(x, y)y^k = 0\). A Berwald space is characterized by \(C_{hijk} = 0\). Berwald spaces
are specially interesting and important, because the connection is linear, and many
examples of a Berwald space have been known. But any concrete example of a
Landsberg space which is not a Berwald space is not known yet. If a Finsler space
is a Landsberg space and satisfies some additional conditions, then it is merely
a Berwald space (cf. Bácsó & Matsumoto [3]). On the other hand, in the two-
dimensional case, a general Finsler space is a Landsberg space, if and only if its
main scalar \(I(x, y)\) satisfies \(I_{ij}y^i = 0\) (cf. Matsumoto [6]).

The purpose of the present paper is to find a two-dimensional Landsberg space
with a special \((\alpha, \beta)\)-metric \(L(\alpha, \beta) = c_1\alpha + c_2\beta + \alpha^2/\beta\) satisfying some conditions,
where \(c_1, c_2\) are constants and \(c_1 \neq 0\). First we find the condition that a Finsler
space with a special \((\alpha, \beta)\)-metric be a Berwald space (see Theorem 3.1). Next we
determine the difference vector and the main scalar of \(F^2\) with the metric above.

Received by the editors October 14, 2003 and, in revised form, November 22, 2003.
2000 Mathematics Subject Classification. 53B40.
Key words and phrases. Berwald space, Cartan connection, difference vector, Finsler space, Landsberg space, main scalar.
This was supported by Kyungsung University Research Grant in 2003.

279
Finally we derive the condition that a two-dimensional Finsler space F^2 with a special (α, β)-metric be a Landsberg space, and we show that if F^2 with the metric above is a Landsberg space, then it is a Berwald space (see Theorem 4.1).

2. Preliminaries

Let $F^n = (M^n, L(\alpha, \beta))$ be an n-dimensional Finsler space with an (α, β)-metric and $R^n = (M^n, \alpha)$ the associated Riemannian space, where $\alpha^2 = a_{ij}(x)y^iy^j$, $\beta = b_i(x)y^i$. We put $(a_{ij}) = (a_{ij})^{-1}$.

The Riemannian metric α is not supposed to be positive-definite and we shall restrict our discussions to a domain of (x, y) where β does not vanish. The covariant differentiation in the Levi-Civita connection $(\gamma^i_jk(x))$ of R^n is denoted by the semi-colon. Let us list the symbols here for the late use:

\[
\begin{align*}
2r_{ij} &= b_{ij} + b_{ji} & 2s_{ij} &= b_{ij} - b_{ji} & r^i_j &= a^i_i r_{ij} & s^i_j &= a^i_i s_{ij} \\
&= r^i_j, & & & = b^i_j, & & = b^i_j,
\end{align*}
\]

\[
L_\alpha = \partial L / \partial \alpha, \quad L_\beta = \partial L / \partial \beta, \quad L_{\alpha\alpha} = \partial^2 L / \partial \alpha \partial \beta \quad \text{and} \quad y_k = a_{kr}y^r.
\]

The Berwald connection $B\Gamma = (G^i_jk, G^i_j, 0)$ of F^n plays one of the leading roles in the present paper. Denote by B^i_jk the difference tensor Matsumoto [7] of G^i_jk from γ^i_jk:

\[
G^i_jk(x, y) = \gamma^i_jk(x) + B^i_jk(x, y).
\]

With the subscript 0, the transvection by y^i, we have

\[
(2.1) \quad G^i_j0 = \gamma^i_j0 + B^i_j0,
\]

and then $B^i_j = \partial_j B^i_0$ and $B^i_jk = \partial_k B^i_j$. On account of Matsumoto [7], the Berwald connection $B\Gamma$ of a Finsler space with (α, β)-metric $L(\alpha, \beta)$ is given by (2.1) and (2.2), where B^i_jk are the components of a Finsler tensor of $(1, 2)$-type which is determined by

\[
(2.3) \quad L_\alpha B^i_jk y^i y_k = a L_\beta (b_{ij} - B^k_i b_k) y^i.
\]

According to Matsumoto [7], $B^i(x, y)$ is called the difference vector. If

\[
\beta^2 L_\alpha + \alpha \gamma^2 L_{\alpha\alpha} \neq 0,
\]

where $\gamma^2 = b^2 \alpha^2 - \beta^2$, then B^i is written as follows:

\[
(2.4) \quad B^i = \frac{E}{\alpha} y^i + \frac{a L_\beta}{L_\alpha} s^i_0 - \frac{a L_{\alpha\alpha}}{L_\alpha} C_x \left(\frac{1}{\alpha} y^i - \frac{\alpha}{\beta} y^i \right),
\]
where

\[E = \frac{\beta L_\beta}{L} C^* \quad \text{and} \quad C^* = \frac{\alpha \beta (r_0 L_\alpha - 2 \alpha s_0 L_\beta)}{2(\beta^2 L_\alpha + \alpha^2 L_{\alpha\alpha})}. \]

Furthermore, by means of Hashiguchi, Hōjō & Matsumoto [4] we have

\[\alpha_i = -\frac{L_\beta}{L_\alpha} \beta_\mu. \]

\[\beta y^i = r_{00} - 2 b_r B^r. \]

\[b_i^2 = 2(r_0 + s_0). \]

\[\gamma^2 y^i = 2(r_0 + s_0) \alpha^2 - 2 \left(\frac{L_\beta}{L_\alpha} b_i^2 + \beta \right) (r_{00} - 2 b_r B^r). \]

The following Lemmas have been shown:

Lemma 2.1 (Bácsó & Matsumoto [2]). If \(\alpha^2 \equiv 0 \pmod{\beta} \), that is, \(a_{ij}(x)y^i y^j \) contains \(b_i(x)y^i \) as a factor, then the dimension \(n \) is equal to two and \(b^2 \) vanishes. In this case we have \(\delta = d_i(x)y^i \) satisfying \(\alpha^2 = \beta \delta \) and \(d_i b^i = 2 \).

Lemma 2.2 (Hashiguchi, Hōjō & Matsumoto [4]). We consider a two-dimensional case.

1. If \(b^2 \neq 0 \), then there exist a sign \(\epsilon = \pm 1 \) and \(\delta = d_i(x)y^i \) such that \(\alpha^2 = \beta^2/b_i^2 + \epsilon \delta^2 \) and \(d_i b^i = 0 \).

2. If \(b^2 = 0 \), then there exists \(\delta = d_i(x)y^i \) such that \(\alpha^2 = \beta \delta \) and \(d_i b^i = 2 \).

If there are two functions \(f(x) \) and \(g(x) \) satisfying \(f \alpha^2 + g \beta^2 = 0 \), then \(f = g = 0 \) is obvious, because \(f \neq 0 \) implies a contradiction \(\alpha^2 = (-g/f) \beta^2 \).

Throughout the paper, we shall say “homogeneous polynomial(s) in \((y^i)\) of degree \(r\)” as \(hp(r) \) for brevity. Thus \(\gamma_0 y^0 \) are \(hp(2) \).

3. Berwald Space

In the present section, we find the condition that a Finsler space \(F^n \) with a special \((\alpha, \beta)\)-metric be a Berwald space.

Let \(F^n = (M^n, L(\alpha, \beta)) \) be an \(n \)-dimensional Finsler space with a special \((\alpha, \beta)\)-metric given by

\[L(\alpha, \beta) = c_1 \alpha + c_2 \beta + \alpha^2 / \beta, \]

where \(c_1, c_2 \) are constants, and \(c_1 \neq 0 \).
We shall assume $b^2 \neq 0$. If $b^2 = 0$, then from Lemma 2.2 we have $\alpha^2 = \beta \delta$, so $L = c_1 \alpha + (c_2 \beta + \delta)$, which is a Randers metric. So the assumption $b^2 \neq 0$ is reasonable.

Then from the above we have

$$(3.2) \quad L_\alpha = c_1 + 2\alpha/\beta, \quad L_\beta = c_2 - \alpha^2/\beta^2, \quad L_{\alpha\alpha} = 2/\beta.$$

Substituting (3.2) into (2.3), we obtain

$$(3.3) \quad c_1 \beta^2 B_j^k i y^i y^k + \alpha \{2\beta B_j^k i y^i y^k + (\alpha^2 - c_2 \beta^2) (b_{ji} - B_j^k b_k) y^i \} = 0.$$

Assume that the Finsler space with (3.1) be a Berwald space, that is, $G_j^i k = G_j^i k(x)$. Then we have $B_j^k i = B_j^k i(x)$, so the left-hand side of (3.3) has a form

$$(3.4) \quad P(x, y) + \alpha Q(x, s) = 0,$$

where P, Q are polynomials in (y^i) while α is irrational in (y^i). Hence the above (3.3) shows $P = Q = 0$. By Lemma 2.1, the assumption $b^2 \neq 0$ implies $\alpha^2 - c_2 \beta^2 \neq 0$. Thus we have

$$(3.5) \quad B_j^k i a_{kh} y^i y^h = 0 \quad \text{and} \quad (b_{ji} - B_j^k i b_k) y^i = 0.$$

The former yields $B_j^k i a_{kh} + B_h^k i a_{kj} = 0$, so we have $B_j^k i = 0$. Then the latter leads to $b_{ji} = 0$ directly.

Conversely, if $b_{ij} = 0$, then $(\gamma_j^i k, \gamma_0^i j, 0)$ becomes the Berwald connection of F^n due to the well-known Okada's axioms. Thus F^n is a Berwald space. Therefore we have:

Theorem 3.1. The Finsler space F^n with a special (α, β)-metric (3.1) satisfying $b^2 \neq 0$ is a Berwald space if and only if $b_{ji} = 0$, and then the Berwald connection is essentially Riemannian $(\gamma_j^i k, \gamma_0^i j, 0)$.

4. Two-dimensional Landsberg space

In the present section, we find the necessary and sufficient conditions that a two-dimensional Finsler space with a special (α, β)-metric (3.1) be a Landsberg space.

The difference vector B^i of the Finsler space has been first given in Shibata, Shimada, Azuma & Yasuda [11]. Here, by means of (2.4) and (3.2), we have

$$(4.1) \quad 2B^i = \frac{AB}{\beta(c_1 \beta + 2\alpha) L \Omega} \left(y^i + \frac{2\alpha^3 L L^i}{B^i} \right) + \frac{2\alpha(c_2 \beta^2 - \alpha^2)}{\beta(c_1 \beta + 2\alpha) s^i}.$$
where

\[A = \beta(2\alpha + c_1 \beta)r_{00} + 2\alpha(\alpha^2 - c_2 \beta^2)s_0, \]
\[B = c_1c_2 \beta^3 - 3c_1\alpha^2 \beta - 4\alpha^3, \]
\[\Omega = c_1 \beta^3 + 2b^2 \alpha^3. \]

It is trivial that \(\beta \neq 0, \ c_1 \beta + 2\alpha \neq 0 \) and \(\Omega \neq 0 \), because \(\alpha \) is irrational in (\(y^i \)). It follows from (4.1) that

(4.2) \[r_{00} - 2b_r B^r = \frac{\alpha(c_1 \beta + 2\alpha)A}{L \Omega}. \]

Now we deal with the necessary and sufficient conditions that a two-dimensional Finsler space \(F^2 \) with (3.1) be a Landsberg space. It is well known that in the two-dimensional case, a general Finsler space is a Landsberg space, if and only if its main scalar \(I_{ij}y^i = 0 \). Owing to Antonelli, Ingarden & Matsumoto [1], Kitayama, Azuma & Matsumoto [5], the main scalar \(I \) of a two-dimensional Finsler space \(F^2 \) with (3.1) is obtained as follows:

(4.3) \[\varepsilon I^2 = \frac{9\gamma^2 M^2}{4\alpha^3 \Omega^3}, \text{ where } M = c_1c_2 \beta^5 - c_1\alpha^2 \beta^3 - 2c_1b^2 \alpha^4 \beta - 4b^2 \alpha^5. \]

The covariant differentiation of (4.3) leads to

(4.4) \[4\alpha^2 \beta^2 L \Omega^4 \varepsilon I^2 \]
\[= 9M(\alpha \beta \Omega M \gamma^2_{ii} + 2\alpha \beta \Omega \gamma^2 M_{ii} - \beta \Omega \gamma^2 M \alpha_{ii} - \alpha \Omega \gamma^2 M \beta_{ii} - 3\alpha \beta \gamma^2 M \Omega_{ii}). \]

Trasvecting (4.4) by \(y^i \), we have

(4.5) \[4\alpha^2 \beta^2 L \Omega^4 \varepsilon I^2 y^i = 9M(U \gamma^2_{ij} y^i + Q M_{ij} y^i - R \alpha_{ij} y^i - S \beta_{ij} y^i - T \Omega_{ij} y^i), \]

where

\[U = c_1^2c_2 \alpha^9 - c_1^2 \alpha^3 \beta^7 + 2c_1c_2b^2 \alpha^4 \beta^6 - 2c_1^2b^2 \alpha^5 \beta^5 - 6c_1b^2 \alpha^6 \beta^4 - 4c_1b^4 \alpha^8 \beta^2 - 8b^6 \alpha^9 \beta, \]
\[Q = -2c_1 \beta \alpha^6 + 2c_1 b^2 \alpha^3 \beta^4 - 4b^2 \alpha^4 \beta^3 + 4b^4 \alpha^6 \beta, \]
\[R = -c_1^2c_2 \beta^{11} + c_1^2(c_2 b^2 + 1) \alpha^2 \beta^9 - 2c_1c_2 b^2 \alpha^3 \beta^8 + c_1^2b^2 \alpha^4 \beta^7 + 2c_1 b^2(c_2 b^2 + 3) \alpha^6 \beta^6 - 2c_1b^4 \alpha^6 \beta^5 - 2c_1b^4 \alpha^7 \beta^4 + 8b^4 \alpha^8 \beta^3 - 4c_1b^6 \alpha^9 \beta^2 - 8b^6 \alpha^{10} \beta, \]
\[S = -c_1^2c_2 \alpha \beta^{10} + c_1^2(c_2 b^2 + 1) \alpha^3 \beta^8 - 2c_1c_2 b^2 \alpha^4 \beta^7 + c_1^2b^2 \alpha^5 \beta^6 + 2c_1b^2(c_2 b^2 + 3) \alpha^6 \beta^5 - 2c_1b^4 \alpha^7 \beta^4 - 2c_1b^4 \alpha^8 \beta^3 + 8b^4 \alpha^9 \beta^2 - 4c_1b^6 \alpha^{10} \beta - 8b^6 \alpha^{11}, \]
\[T = -3c_1c_2\alpha^8 + 3c_1(c_2b^2 + 1)\alpha^2\beta^6 + 3c_1b^2\alpha^5\beta^4 + 12b^2\alpha^6\beta^3 - 6c_1b^4\alpha^7\beta^2 - 12b^4\alpha^8\beta. \]

Thus the equation (4.5) is rewritten in the form
\[4\alpha^2\beta^2L^2\Omega^2\varepsilon I^2_y = 9M(U\gamma_i^2y^i + V\alpha_i^2y^i + W\beta_i^2y^i + X\delta_i^2y^i), \]

where
\[V = c_1^2c_2\beta^{11} - c_1^2(c_2b^2 - 3)\alpha^2\beta^9 + 20c_1c_2b^2\alpha^3\beta^8 - 13c_1b^2\alpha^4\beta^7 - 4c_1b^2(5c_2b^2 - 18)\alpha^2\beta^9 + 14c_1^2b^6\alpha^6\beta^5 - 32c_1b^2\alpha^7\beta^4 - 72c_1b^6\alpha^9\beta^2, \]
\[W = -4c_1^2\alpha^3\beta^8 - 18c_1c_2b^2\alpha^4\beta^7 - 12c_1b^2\alpha^5\beta^6 + 6c_1b^2(3c_1c_2b^2 - 5)\alpha^6\beta^5 - 2c_1b^4(1 - 9)\alpha^7\beta^4 + 34c_1b^4\alpha^8\beta^3 - 8b^4\alpha^9\beta^2 - 4c_1b^6\alpha^{10}\beta + 8b^6\alpha^{11}, \]
\[X = 6c_1c_2\alpha^4\beta^8 + 4c_1^2b^2\alpha^5\beta^7 - 2c_1(3c_2b^2 - 1)\alpha^6\beta^6 - 4c_1^2b^2\alpha^7\beta^5 - 6c_1b^2\alpha^8\beta^4 - 8b^2\alpha^9\beta^3 + 4c_1b^6\alpha^{10}\beta^2 + 8b^6\alpha^{11}\beta. \]

Consequently, the two-dimensional Finsler space \(P^2 \) with (3.1) is a Landsberg space, if and only if
\[U\gamma_i^2y^i + V\alpha_i^2y^i + W\beta_i^2y^i + X\delta_i^2y^i = 0, \]
where \(M \neq 0 \). If \(M = 0 \), then \(b^2 = 0 \), namely, it is a contradiction.

By means of (2.5), (2.6), (2.7) and (2.8), the equation above is written as
\[2\beta(c_1\beta + 2\alpha)(\alpha^2U + X)(r_0 + s_0) + [(\alpha^2 - c_2\beta^2)V + \beta(c_1\beta + 2\alpha)W - 2\{c_1\beta^3 + (c_2b^2 + 2)\alpha\beta^2 - b^2\alpha^3\}U](r_0 - 2b_rB^r) = 0. \]

Substituting (4.2), \(U, V, W \) and \(X \) into (4.8), we obtain
\[[2c_1^2c_2\alpha^3\beta^{14} + 2c_1^2c_2(c_1^2 + 6c_2)\alpha^4\beta^{13} + 20c_1^3c_2\alpha^5\beta^{12} + 2c_1^2(3c_1^2 - 2c_2b^2 + 8c_2)\alpha^6\beta^{11} + 2c_1(12c_2b^2 - 8c_1^2c_2b^2 + 5c_1^3)\alpha^7\beta^{10} + 4c_1^2(2c_2b^2 - 3c_1^2b^2 + 1)\alpha^8\beta^9 + 8c_1b^2(2c_2 - 3c_1^2 - 2c_2b^2)\alpha^9\beta^8 - 20c_1^2b^2(2c_2b^2 + 1)\alpha^{10}\beta^7 - 8c_1b^2(3c_1^2b^2 + 8c_2b^2 + 1)\alpha^{11}\beta^6 - 8b^2(9c_1^2 + 4c_2)\alpha^{12}\beta^5 - 80c_1b^4\alpha^{13}\beta^4 - 32b^4\alpha^{14}\beta^3](r_0 + s_0) + [c_1^3c_2\alpha^4\beta^{15} - c_1^2c_2(5c_1^2 - 2c_2)\alpha^2\beta^{14} - c_1^2c_2(2c_2b^2 + c_2 - 6)\alpha^3\beta^{13} + 4c_1^2(4c_2b^2 - c_1^2 + 8c_2)\alpha^4\beta^{12} + c_1(-31c_1^2c_2b^2 + 40c_2b^2 + c_1^2c_2 - 3c_1^2)\alpha^5\beta^{11} - 2c_1^2(12c_2b^2 + 4c_1^2b^2 + 99c_2b^2 - c_1 - 1)\alpha^6\beta^{10} + c_1b^2(40c_1c_2b^2 - 48c_2b^2 - 16c_1^2 + 13c_1 - 272c_2 - 36)\alpha^7\beta^9 \]
\[+ 2c_1b^2\{c_1b^2(72c_2 - c_1^2 + 9c_1) + 67c_1 - 72)\alpha^8\beta^8 \\
+ 4b^2\{c_1b^2(3c_2^2 + 18c_1 - 4c_2) + 54c_1 - 36)\alpha^9\beta^7 \\
+ 8b^4(10c_1^2c_2b^2 + 14c_1^2 + 9c_1 - 40c_2)\alpha^{10}\beta^6 \\
+ 4c_1b^2\{(84c_2 + c_1^2)b^4 + 84b^2 - 2c_1)\alpha^{11}\beta^5 \\
- 8b^2\{(7c_1^2 - 44c_2)b^4 - 44b^2 + 2c_1^2 + 2c_1)\alpha^{12}\beta^4 \\
- 32c_1b^2(9b^4 + 1)\alpha^{13}\beta^3 - 320b^6\alpha^{14}\beta^2]\gamma_{00} \\
+ [- 2c_1^3c_2^2\alpha^{15} + 10c_1^3c_2\alpha^3\beta^{14} + 2c_1^2c_2^2(2c_2b^2 + c_2 - 15)\alpha^4\beta^{13} \\
- 2c_1c_2(32c_2^2b^2 + 3c_1^2)\alpha^5\beta^{12} + 2c_1^2c_2(29c_2b^2 - 3c_2 + 15)\alpha^6\beta^{11} \\
+ 4c_1(2c_2b^2(6c_2^2b^2 + 2c_1^2 + 34c_2 + 5) - c_1^2)\alpha^7\beta^{10} \\
- 2c_1\{c_2b^2(40c_1c_2b^2 + 13c_1 - 36) - c_1(-31c_2b^2 + c_2 + 1)\}\alpha^8\beta^9 \\
- 2b^2\{c_1c_2b^2(60c_2 - c_1^2 + 9c_1) + 8c_1^2 + 190c_2c_1 - 36c_2)\alpha^9\beta^8 \\
+ 2b^2\{-4c_2b^2(-6c_1^2 + 9c_1 - 40c_2) + c_1(13c_2 - 16)\}\alpha^{10}\beta^7 \\
- 2c_1\{c_1b^2(40c_2b^2 + 4c_2 + c_1^2 - 9c_1) + 54c_1 - 36)\alpha^{11}\beta^6 \\
- 8b^2\{(84c_2 - 4c_1^2 - 9c_1)b^2 - 8b^2 - 2c_1c_2)\alpha^{12}\beta^5 \\
+ 32c_1b^2(9c_2b^4 + 5b^2 + c_2)\alpha^{13}\beta^4 + 4b^2\{(84c_2 + c_1^2)b^4 + 44b^2 - 2c_1)\alpha^{14}\beta^3 \\
- 32c_1b^2(4b^4 + 1)\alpha^{15}\beta^2 - 320b^6\alpha^{16}\beta]\zeta_{00} = 0. \\

Separating (4.9) in the rational and irrational terms with respect to \(y^i\), we have

\[(4.10) \quad \{\alpha^4\beta^2D_1(r_0 + s_0) + \alpha^2\beta E_1r_0 + 2\alpha^2F_1s_0 \}
\]

\[+ \alpha\{\alpha^2\beta^3D_2(r_0 + s_0) + \beta^2E_2r_0 + 2\alpha^2\beta F_2s_0 \} = 0, \]

where

\[D_1 = 2c_1^2c_2(c_1^2 + 6c_2)\beta^{10} + 2c_1^2(3c_1^2 - 2c_2b^2 + 8c_2)\alpha^2\beta^8 \\
+ 4c_1^2(2c_2b^2 - 3c_1^2b^2 + 1)\alpha^4\beta^6 - 20c_1^2b^2(2c_2b^2 + 1)\alpha^6\beta^4 \\
- 8b^4(9c_1^2 + 4c_2)\alpha^8\beta^2 - 32b^4\alpha^{10}, \]

\[D_2 = 2c_1^3c_2^2\beta^{10} + 20c_1^3c_2\alpha^2\beta^8 + 2c_1(12c_2b^2 - 8c_1^2c_2b^2 + 5c_1^2)\alpha^4\beta^6 \\
+ 8c_1b^2(2c_2 - 3c_1^2 - 2c_2b^2)\alpha^6\beta^4 - 8c_1b^2(3c_1^2b^2 + 8c_2b^2 + 1)\alpha^8\beta^2 - 80c_1b^4\alpha^{10}, \]

\[E_1 = - c_1^2c_2(5c_1^2 - 2c_2)\beta^{12} + 4c_1^2(4c_2b^2 - c_1^2 + 8c_2\alpha^2\beta^10 \\
- 2c_1^2(12c_2b^4 + 4c_1^2b^2 + 99c_2b^2 - c_1^2 - 1)\alpha^4\beta^8. \]
\[+ 2c_1b^2\{c_1b^2(72c_2 - c_2^2 + 9c_1) + 67c_1 - 72\}\alpha^6\beta^6 \\
+ 8b^4\{10c_1^2c_2b^2 + 14c_1^2 + 9c_1 - 40c_2\}\alpha^8\beta^4 \\
- 8b^2\{(7c_1^2 - 44c_2)b^4 - 44b^2 + 2c_1^2 + 2c_1\}\alpha^{10}\beta^2 - 320b^6\alpha^{12}, \\
E_2 \equiv c_1^3c_2^3\beta^{12} - c_1^3c_2(2c_2b^2 + c_2 - 6)\alpha^2\beta^{10} \\
+ c_1(-31c_1^2c_2b^2 + 40c_2^3b^2 + c_1^2c_2 - 3c_1^2)\alpha^4\beta^8 \\
+ c_1b^2(40c_1c_2b^2 - 48c_2^3b^2 - 16c_1^2 + 13c_1 - 27c_2 - 36)\alpha^6\beta^6 \\
+ 4b^2\{c_1b^2(3c_1^2 + 18c_1 - 4c_2) + 54c_1 - 36\}\alpha^8\beta^4 \\
+ 4c_1b^2\{(84c_2 + c_1^2)b^4 + 84b^2 - 2c_1\}\alpha^{10}\beta^2 - 32c_1b^2(9b^4 + 1)\alpha^{12}, \\
F_1 = - c_1^2c_2^2\beta^{14} + c_1^2c_2^2(2c_2b^2 + c_2 - 15)\alpha^2\beta^{12} + c_1^2c_2(29c_2b^2 - 2c_2 + 15)\alpha^4\beta^{10} \\
- c_1\{c_2b^2(40c_1c_2b^2 + 13c_1 - 36) - c_1(-31c_2b^2 + c_2 + 1)\}\alpha^6\beta^8 \\
+ b^2\{-4c_1b^2(-6c_1^2 + 9c_1 + 40c_2) + c_1(13c_1 - 36)\}\alpha^8\beta^6 \\
- 4b^2\{c_1(44c_2 + c_1^2)b^4 + (84c_2 - c_1^2 - 9c_1)b^2 - 2c_1c_2\}\alpha^{10}\beta^4 \\
+ 4b^2\{(84c_2 + c_1^2)b^4 + 44b^2 - 2c_1\}\alpha^{12}\beta^2 - 160b^6\alpha^{14}, \\
F_2 = 5c_1^3c_2\beta^{12} - c_1c_2(32c_2^3b^2 + 3c_1^3)\alpha^2\beta^{10} \\
+ 2c_1\{c_2b^2(6c_2^3b^2 + 2c_1^2 + 34c_2 + 5) - c_1^2\}\alpha^4\beta^8 \\
- b^2\{c_1c_2b^2(60c_2 - c_1^2 + 9c_1) + 8c_1^3 + 190c_1c_2 - 36c_2\}\alpha^6\beta^6 \\
- 2b^2\{c_1b^2(40c_2^3b^2 + 4c_2 + c_1^2 - 9c_1) + 54c_1 - 36\}\alpha^8\beta^4 \\
+ 16c_1b^2(9c_2b^4 + 5b^2 + c_2)\alpha^{10}\beta^2 - 16c_1b^2(4b^4 + 1)\alpha^{12}. \\
\]

which yield two equations as follows:

(4.11) \[\alpha^2\beta^2D_1(r_0 + s_0) + \beta E_1r_000 + 2F_1s_0 = 0, \]

(4.12) \[\alpha^2\beta^2D_2(r_0 + s_0) + \beta E_2r_000 + 2\alpha^2F_2s_0 = 0. \]

From (4.12) we obtain

(4.13) \[c_1^3c_2^3\beta^{13}r_000 \equiv 0 \pmod{\alpha^2}. \]

If \(c_2 \neq 0 \), then there exists a function \(f(x) \) such that \(r_00 = \alpha^2f(x) \). Thus we have

(4.13') \[r_{ij} = a_{ij}f(x). \]

Transvection by \(b^iy^j \) leads to

(4.13'') \[r_0 = \beta f(x); \quad r_j = b_jf(x). \]
Elimination \((r_0 + s_0)\) from (4.11) and (4.12), from (4.13') we have
\[(4.14) \quad f(x)\beta\alpha^2(D_2E_1 - D_1E_2) + 2(D_2F_1 - \alpha^2D_1F_2)s_0 = 0.\]

From \(\alpha^2 \not\equiv 0 \pmod{\beta}\) it follows that there exists a function \(g(x)\) satisfying \(s_0 = g\beta\).
Hence (4.14) is reduced to
\[(4.14') \quad \alpha^2\{f(x)(D_2E_1 - D_1E_2) - 2g(x)D_1F_2\} + 2g(x)D_2F_1 = 0.\]

Since only the term \(-4c_1^5c_2^5g(x)\beta^{24}\) of \(2g(x)D_2F_1\) seemingly does not contain \(\alpha^2\), we must have \(hp(22)\) \(V_{22}\) such that \(\beta^{24} = \alpha^2V_{22}\). Thus it is a contradiction because of \(\alpha^2 \not\equiv 0 \pmod{\beta}\), that is, \(D_2F_1\) does not contain \(\alpha^2\) as a factor. Hence from (4.14') we have \(g(x) = 0\), which leads to \(s_0 = 0\) and \(s_1 = 0\). Further, substituting \(g(x) = 0\) into (4.14'), we obtain
\[(4.14'') \quad f(x)(D_2E_1 - D_1E_2) = 0.\]

If \((D_2E_1 - D_1E_2) = 0\), then the term of \(D_2E_1 - D_1E_2\) which does not contain \(\alpha^2\) as a factor is \(-4c_1^5c_2^5(3c_1^2 + 2c_2)\beta^{22}\). If \(3c_1^2 + 2c_2 \neq 0\), then there exists \(hp(20)\) \(V_{20}\) such that \(\beta^{22} = \alpha^2V_{20}\). From \(\alpha^2 \not\equiv 0 \pmod{\beta}\) and \(b^2 \neq 0\) we have \(V_{22} = 0\). It is a contradiction, which leads to \(D_2E_1 - D_1E_2 \neq 0\). Thus from (4.14'') we have \(f(x) = 0\). From (4.13') we get \(r_{ij} = 0\).

In each exceptional case where \(c_2 = 0\) or \(3c_1^2 + 2c_2 = 0\), we have the same conclusion similarly.

Summarizing up, we obtain \(r_{ij} = 0\) and \(s_1 = 0\), that is,
\[(4.15) \quad b_{i;j} + b_{j;i} = 0, \quad b^rb_{r;i} = 0.\]

Therefore \(b_1(x)\) is the so-called Killing vector field with a constant length.

According to Hashiguchi, Hōjō & Matsumoto [4], the condition (4.15) is equivalent to \(b_{i;j} = 0\). So we have

Theorem 4.1. Let \(F^2\) be a two-dimensional Finsler space with a special \((\alpha, \beta)\)-metric (3.1) satisfying \(b^2 \neq 0\). If \(F^2\) is a Landsberg space, then \(F^2\) is a Berwald space.

5. Acknowledgement

The author would like to thank Prof. Masao Hashiguchi for helpful discussions and for kind guidance.
REFERENCES

Department of Mathematics, Kyungsung University, 110-1 Daeyeon-dong, Nam-gu, Busan 608-736, Korea

Email address: iyleestar.ks.ac.kr