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ON TWO-DIMENSIONAL LANDSBERG SPACE
WITH A SPECIAL (¢,B)-METRIC

IL-YONG LEE

ABSTRACT. In the present paper, we treat a Finsler space with a special (a, 8)-
metric L(a, 8) = cio + c28 + o /B satisfying some conditions. We find a condition
that a Finsler space with a special (a, 8)-metric be a Berwald space. Then it is shown
that if a two-dimensional Finsler space with a special (¢, 8)-metric is a Landsberg
space, then it is a Berwald space.

1. INTRODUCTION

In the Cartan connection CT, a Finsler space is called Landsberg space, if the
covariant derivative Ch;;, of the C-torsion tensor Chi; = ahaiaj(Lz/él) satisfies
Chijik(z, y)y* = 0. A Berwald space is characterized by Chijix = 0. Berwald spaces
are specially interesting and important, because the connection is linear, and many
examples of a Berwald space have been known. But any concrete example of a
Landsberg space which is not a Berwald space is not known yet. If a Finsler space
is a Landsberg space and satisfies some additional conditions, then it is merely
a Berwald space (c¢f. Bcsé & Matsumoto [3]). On the other hand, in the two-
dimensional case, a general Finsler space is a Landsberg space, if and only if its
main scalar I(z,y) satisfies I[,,-yi = 0 (¢f. Matsumoto [6]).

The purpose of the present paper is to find a two-dimensional Landsberg space
with a special (o, 8)-metric L(a, 8) = cia + coff + o?/B satisfying some conditions,
where c1, ¢o are constants and c¢; # 0. First we find the condition that a Finsler
space with a special (o, 3)-metric be a Berwald space (see Theorem 3.1). Next we
determine the difference vector and the main scalar of F? with the metric above.
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Finally we derive the condition that a two-dimensional Finsler space F? with a
special (@, B)-metric be a Landsberg space, and we show that if F2 with the metric

above is a Landsberg space, then it is a Berwald space (see Theorem 4.1).

2. PRELIMINARIES

Let F* = (M", L(a, 8)) be an n-dimensional Finsler space with an («, 8)-metric
and R™ = (M",a) the associated Riemannian space, where o? = a;;(z)y'y’, 8 =
bi(z)y'. We put (ai;) = (ai;) 7"

The Riemannian metric « is not supposed to be positive-definite and we shall
restrict our discussions to a domain of (z,y) where § does not vanish. The covariant
differentiation in the Levi-Civita connection (7;%x(z)) of R™ is denoted by the semi-
colon. Let us list the symbols here for the late use:

2ry; = bi; + by 2855 = by — by rij = ai"rrj sij = a"s,-j,
ri = br’l‘ri, 8; = brs"i, bz = ai’"br, b2 = a”brbs,

Lo =0L/0a, Lg=0L/0B, Laa=0La/0 and yi=aky .

The Berwald connection BT = (G;%, G*;,0) of F™ plays one of the leading roles
in the present paper. Denote by B;’j the difference tensor Matsumoto [7] of G,
from 'yjik:
(2.1) Gi'k(z,y) = 1'% (@) + Bi'k(z,y).
With the subscript 0, the transvection by 3¢, we have
(2.2) G'; = v'; + B'j, 2G' =+ 2B,
and then Bij = 3]-Bi and Bjik = c")kBij. On account of Matsumoto [7], the Berwald
connection BT of a Finsler space with (a, 8)-metric L(a, 8) is given by (2.1) and

(2.2), where B;‘; are the components of a Finsler tensor of (1,2)-type which is

determined by

(2.3) LoBji*iy'yx = aLg(bjs — Bi*ibr)y’.

According to Matsumoto [7], B*(z,y) is called the difference vector. If
B?La + 07*Laa # 0,

where v% = b%a? — 32, then B! is written as follows:

. E , aLg; alag 1 . a,.
] i i hand * _ __C* 2yt - Zpt ,
(2 4) B ay + L. s0 L. (ay F; )
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where )
BLg af(rooLa — 2as9Lg
E="2>=C" and C* = .
L 2(8%La + a72Laa)
Furthermore, by means of Hashiguchi, Hgj6 & Matsumoto [4] we have
Lg
(2.5) o = —'Izﬁp'-
(2.6) Biy* = roo — 26, B".
(2.7) bfiyi = 2(ro + $0)-
. L
(2.8) Tiy' = 2(ro + so)a® — 2 (fﬁbza + 5) (roo — 2b,B").
[}

The following Lemmas have been shown:

Lemma 2.1 (Bicsé & Matsumoto [2]). If o® = 0 (mod B), that is, aij(z)y'y’
contains b;(z)y* as a factor, then the dimension n is equal to two and b* vanishes.
In this case we have § = d;(x)y" satisfying o® = Bo and d;b* = 2.

Lemma 2.2 (Hashiguchi, Hojo & Matsumoto [4]). We consider the two-dimensional

case.

(1) If 2 # 0, then there exist a sign € = *1 and § = d;(x)y’ such that a® =
B%/b% + 6% and d;b* = 0.

(2) Ifb? = 0, then there ezists § = d;(z)y® such that a® = $§ and d;b* = 2.

If there are two functions f(z) and g(z) satisfying fa®+gB8% =0, then f =g =0
is obvious, because f # 0 implies a contradition o? = (—g/f)B2.

Throughout the paper, we shall say “homogeneous polynomial(s) in (¥*) of degree
" as hp(r) for brevity. Thus 7o' are hp(2).

3. BERWALD SPACE

In the present section, we find the condition that a Finsler space F™ with a special
(e, B)-metric be a Berwald space.
Let F"* = (M™, L(a, 3)) be an n-dimensional Finsler space with a special (e, 8)-

metric given by
(3.1) L{a,B) = cra + 2 + a*/B,

where c¢1, ¢g are constants, and ¢1 # 0.
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We shall assume b # 0. If b2 = 0, then from Lemma 2.2 we have o? = f9,
so L = cia + (c28 + §), which is a Randers metric. So the assumption b* # 0 is
reasonable.

Then from the above we have

(3.2) Lo=c1+2a/B, Lg=ca—0a?/B%, Loa=2/B
Substituting (3.2) into (2.3), we obtain
(3.3) 18°Bi* 'y + a{2B8B* iy i + (0 — c2B%) (b — B;*ibe)y’} = 0.

Assume that the Finsler space with (3.1) be a Berwald space, that is, G; =
G,'k(z). Then we have B;*; = B;*;(z), so the left-hand side of (3.3) has a form

(3.4) P(z,y) + aQ(z,s) =0,
where P, Q are polynomials in () while ¢ is irrational in (y*). Hence the above

(3.3) shows P = Q = 0. By Lemma 2.1, the assumption b* # 0 implies & —cp3% # 0.

Thus we have
(3.5) Bi*iakmy’y® =0 and (b — BiFibi)y’ =0.

The former yields Bjkiakh + Bhkiakj = 0, so we have Bjk,' = 0. Then the latter
leads to bj; = 0 directly.

Conversely, if b;;; = 0, then ('yjik, 'yoij, 0) becomes the Berwald connection of F™
due to the well-known Okada’s axioms. Thus F™ is a Berwlad space. Therefore we

have.

Theorem 3.1. The Finsler space F™ with a special (o, B)-metric (8.1) satisfying
b% # 0 is a Berwald space if and only if b;; = 0, and then the Berwald connection

is essentially Riemannian (v;'k,¥0%;,0).

4. TWO-DIMENSIONAL LANDSBERG SPACE

In the present section, we find the necessary and sufficient conditions that a two-
dimensional Finsler space with a special (a, )-metric (3.1) be a Landsberg space.
The difference vector B! of the Finsler space has been first given in Shibata,
Shimada, Azuma & Yasuda [11]. Here, by means of (2.4) and (3.2), we have
. AB 203L 20(c2f? — o)
4.1 2B' = b4 b’) s'o,
(4.1) Ble1f + 20) LY (y B B(ciB + 2a)  °
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where

A = B(2a + c1f)roo + 20(a® — c28%)so,
B = ¢1e28% — 3c10%8 — 4a®,
Q=18+ 2p%°.
It is trivial that 8 # 0, ¢18 + 2a # 0 and Q # 0, because « is irrational in (y*).
It follows from (4.1) that

alc1f+2a)A
LQ
Now we deal with the necessary and sufficient conditions that a two-dimensional

Finsler space F? with (3.1) be a Landsberg space. It is well known that in the

(4.2) roo — 2b, B =

two-dimensional case, a general Finsler space is a Landsberg space, if and only if its
main scalar I|Z-yi = 0. Owing to Antonelli, Ingarden & Matsumoto [1], Kitayama,
Azuma & Matsumoto [5], the main scalar I of a two-dimensional Finsler space F?
with (3.1) is obtained as follows:

2 M _ 5_ . 203 o 12 4p 412 5
(4.3) el = TafL® where M = cie2° ~ c1a“f8° — 2c1b°a* B — 4b°a®.

The covariant differentiation of (4.3) leads to
(44) 4?B2LO%eI]
= IM (M~ + 20BQ7* M); — BV May; — oy MBy; — 3afy° MQ,).
Trasvecting (4.4) by y*, we have
(4.5) 4a2B2LQ4€I|2i P = 9M(U'y|2iyi + QMliyi - Ra|,~yi — SBHyi — TQ|iyi),
where
U= cfc2a,39 - cfa3,37 + 2¢1c9b%a B8 — 2c%b2a5ﬂ5 —6c1b%a8B* — 4c1b%adB?
— 8b%a¥8,
Q = — 2c1a8% + 2c:1b%aB% — 42033 + 46405,
R =~ clcof™ + 2(cob® + 1)a?B° — 2c1c20%03 B8 + 202087 + 2¢16%(cab? + 3)a®3°
— 22688 — 2¢1b%a 8 + 8b1a® B —~ 4¢1680° 2% —- 8050108,
S = — a0 + 2 (cab® + 1)a3B8 — 2c1c0b% 087 + cAb?a®B8
+ 261b2(62b2 +- 3)a6ﬁ5 - 20%b4a7ﬁ4 - 2c1b%a®B% + 8b4019ﬂ2 — 4clb6a10B

. 8b6a11,
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T = — 3cic3088 + 3c1(cab? + 1)a38% + 3102 B + 12620082 — 6c1b%a™ B2
— 12b%a88.
Thus the equation (4.5) is rewritten in the form

(4.6) 4B L eIy = IM(Uniy' + Vo' + W' + Xbly'),

|2
where

V= c:fczﬁ“ — c%(czb2 - 3)012ﬁ9 + 20c1cob?a® 88 — 13c§b2a4ﬂ7
- 4(:1b2(5czb2 - 18)01556 + 14c§b4a655 — 32c1b%a” B — 72¢:68a°52,

W= —- 4c§a3ﬂ8 — 18¢icab?ap’ — 12c§b2a5ﬁ6 + 6c1b2(3clczb2 — 5)a655
— 2¢1b%(e; — 9)a’B* + 34c,b1a®p% — 8b1a®B? — 4c, 8508 + 8b8al?,

X = 6c1c00% B8 + 4c2a’B™ — 2¢1(3c2b® — 1)ab8° — 4c?b%a 8% — 6c1b%a®p?
— 8b20%83 + 4c1b%a08? + 8b4allp.

Consequently, the two-dimensional Finsler space F? with (3.1) is a Landsberg

space, if and only if

(4.7) Ui + Vo' + W' + Xbiy' =0,

|
where M # 0. If M = 0, then b% = 0, namely, it is a contradiction.
By means of (2.5), (2.6), (2.7) and (2.8), the equation above is written as

(4.8) 2B8(c1B + 20)(@2U + X)(ro + so) + [(@® — c2B*)V + B(c1B + 20)W
— 2{c18% + (cab® + 2)af? — b2a3}U](roo — 2b,B7) = 0.
Substituting (4.2), U, V, W and X into (4.8), we obtain
(4.9) [ZC?cga‘q’ﬁM + 2c2co(c? + 6¢2)a* B2 + 20c3 o0 B2
+2¢2(3c? - 2¢2b? + 8c2)a® B 4 2¢1(12¢2b° — 8ccab® + 5c?)a’ B0
+ 4¢?(2¢9b? — 3¢20% 4+ 1)aBB? + 8¢1b%(2¢2 — 3¢ — 2c3b%)a” B8
— 20262 (2¢2b? + 1)at®87 — 8c1b?(3¢2b% 4 8cb? + 1)al! Bl
— 8b*(9¢3 + 4cz)a!?B® — 80cibia B — 3264t 5% (1o + s0)
+ [c3ap® - cAea(5c? — 2c0)afM™ — cBea(2c2b? + c2 — 6)a3p13
+4c2(4c2b? — 2 + 8co)a* 12 + 1 (—31cBeab? + 40c3b? + ciep — 3c2)a B
— 2¢3(12¢2b* + 4c2b? + 99c2b® — ¢1 — 1)a®B0
+ ¢16%(40cycob? — 48¢2b% — 16¢2 + 13¢) — 272¢o — 36)a’B°
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+ 2¢16%{c16%(72¢ca — 3 + 9¢;) + 67¢; — 72}a838
+ 4b*{c16%(3¢2 + 18¢; — 4c3) + 54c; — 36}a’87
+ 8b*(10c2cob? + 14¢% + 9¢; — 40c2)a0B8
+ 4c1b%{(84cy + )b + 84b% — 2¢1}al1B®
— 8b2{(7c? — 44co)b? — 44b% + 2¢2 + 2¢1}a 2Bt
— 32¢16%(95* + 1)a'®B° — 3206%aM B%] g9
+ [ — 2c3c3a?B + 10c3c2adBM + 23 3(2¢0b? + cp — 15)a? B3
— 2¢1¢2(32¢3b% + 3¢))a®B*? + 2c2¢y(29¢ob? — 3¢ + 15)abpM!
+ 4c1{2c2b%(6c2b? + 2¢2 + 34cy + 5) — ¢} B0
- 201{02b2(400102b2 + 13¢; — 36) — cl(—3lczb2 +co + 1)}a8ﬂ9
— 2b%{c1c2b%(60c2 — cZ + 9¢1) + 8¢2 4 190¢; ¢ — 36¢2}aB8
+ 2b?{—4cob? (—6¢2 + 91 — 40c2) + c1(13¢; — 16)}a087
— 202 {c16%(40c2b? + dcz + ¢ — 9¢;) + Bdey — 36}allpl
— 8b%{co(44ca + 2)b* + (84cy — 4c? — 9¢;1)b% — 8b? — 2¢1cp}at?0
+ 32¢10%2(9cob® + 502 + c2)a 3B + 462 {(84cy + c3)b* + 44b — 2¢; }at4B3
— 32c1b%(4b* + 1)a’®p? — 320051%] 59
=0.

Separating (4.9) in the rational and irrational terms with respect to (y!), we have

(4.10) {a*B%D;(ro + so) + @®BE 7o + 202 Fysp}
+ a{a®B*Da(ro + so) + B2 Eargp + 20°BFas0} = 0,

where

Dy =2c2cy(c? + 6¢2)BY0 + 2¢2(3¢? — 2c2b% + 8co)a? B8

+ 4¢3 (2c2b% — 3¢2b% + 1)a? 8% — 20c2b? (2¢2b° + 1)ad6*

— 8b%(9¢? + 4c0)a®p? — 32b%a’?,
Dy =2¢3c2B0 + 20c3c0 B8 + 2¢1(12¢2b? — 8c2cab? + 5ct)a’ B8

+ 8¢1b%(2c2 — 3¢ — 2c2b2)a®B* — 8c1b(3c2b? + 8cob? + 1)aBB? — 80c b1,
E; = — cZep(5¢f — 2¢0) B + 4¢3 (4c3b® ~ ¢ + 8co)a? B

— 2c2(12e3b* + 4¢36% + 99¢ab® — ¢ — 1)a?p®
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+ 216 {c16?(T2c2 — ¢ + 9¢1) + 67c; — 72}a8
+ 86%(10c2cob? + 14¢2 + 9c; — 40c2)aB?
— 8b2{(7c? — 44co)b* — 44b? + 2c% + 2¢,}a'0B% — 32065012,
By =c3c3B' — c3ea(2¢2b? + ¢ — 6)a?BM0
+ c1(—31cicab? + 40c3b% + 2y — 3¢3) a8
+ c1b%(40c1cob? — 48c2b? — 16¢2 + 13¢; — 272¢; — 36)a®43°
+ 4b2{c1b%(3c% + 18¢; — 4cy) + B4ey — 36}adp*
+ 4163 {(84co + c2)b? + 84b% — 2¢,}a 8% — 32¢1b2(90% + 1)a'?,
F =— c%cgﬂ14 + c%c%(2czb2 +cp — 15)042ﬁ12 + 0%02(2902b2 - 2¢9 + 15)a4ﬂ10
~ c1{c2b?(40c1cob? + 13¢; — 36) — 1 (—31c2b® + ¢ + 1) }af38
+ b2 {—4eab?(—6¢2 + 9c; + 40c3) + ¢1(13¢; — 36)}aBA0
— 4b?{ca(44c + 2)b* + (84ca — ¢ — 9¢c1)b? — 2¢1c0}at0B
+ 4b2{(84cz + c2)b* + 44b* — 2¢1}0'?B% — 1606814,
Fy =5c3¢28'2 — c1ca(32¢3b% + 3c2)a? B0
+ 2¢1{2¢2b%(6c3b? + 2¢2 + 34cy + 5) — 2}t
— b*{c1c2b?(60c2 ~ ¢ + 9¢1) + 8¢3 + 190c1co — 36¢2}ab38
— 2b%{c1b%(40c3b? + 4cg + 2 — 9¢y) + 54cy — 36}a’B?
+ 16¢16%(9cab® + 5b% + ¢9)at?B? — 16¢,b%(4b* + 1)a'?.

which yield two equations as follows:

(4.11) o?8%D1(ro + so) + BE1r00 + 2F1s0 = 0,
(4.12) 0282 Dy(rg + s9) + BEarog + 202 Fasg = 0.

From (4.12) we obtain

(4.13) c3c2B%rop =0 (mod o?).

If c; # 0, then there exists a function f(z) such that roo = o f(z). Thus we have
(4.13) rij = aij f(2).

Transvection by b'y leads to

(4.13") ro=Bf(z); r;="5;f(z)
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Elimination (rg + so) from (4.11) and (4.12), from (4.13’) we have
(4.14) f(:c)ﬂa2(D2E1 — D1Ey) + 2(DoFy — Ot2D1F2)So =0.

From a? # 0 (mod ) it follows that there exists a function g(z) satisfying so = g.
Hence (4.14) is reduced to

(4.14) o?{f(z)(D2E1 — D1E3) — 29(z) D1 Fy} + 2g(z) Do Fy = 0.

Since only the term —4c3c3g(z)B%* of 2g(z) Do Fy seemingly does not contain o2, we

must have hp(22) Vaq such that 324 = o?Vy,. Thus it is a contradiction because of
a? # 0 (mod B), that is, DoFy does not contain o? as a factor. Hence from (4.14')
we have g(z) = 0, which leads to sp = 0 and s; = 0. Further, substituting g(z) = 0
into (4.14’), we obtain

(4.14”) f(z)(D2Ey — D,Ep) =0.

If (D2E; — D1E3) = 0, then the term of DyE; — D1 E, which does not contain
o? as a factor is —4c§c3(3c? + 2¢2)B22. If 3¢ + 2cp # 0, then there exists hp(20)
Vao such that 322 = o?Vay. From o? # 0 (mod B3) and b® # 0 we have Voo = 0. It
is a contradiction, which leads to D2E; — D1 E3 # 0. Thus from (4.14") we have
f(z) = 0. From (4.13) we get r;; = 0.

In each exceptional case where ¢ = 0 or 36% + 2co = 0, we have the same
conclusion similarly.

Summarizing up, we obtain 7;; = 0 and s; = 0, that is,
(4.15) bi;j + bj;i =0, brbr;i =0.

Therefore b;(x) is the so-called Killing vector field with a constant length.
According to Hashiguchi, Hojo & Matsumoto [4], the condition (4.15) is equiva-
lent to b;;; = 0. So we have

Theorem 4.1. Let F? be a two-dimensional Finsler space with a special (a, B)-
metric (3.1) satisfying b* # 0. If F? is a Landsberg space, then F? is a Berwald
space.
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