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STARLIKENESS OF MULTIVALENT
MEROMORPHIC HARMONIC FUNCTIONS

G. MURUGUSUNDARAMOORTHY

Dedicated to my brother Er. G. Malmurugu

ABSTRACT. We give sufficient coeflicient conditions for starlikeness
of a class of complex-valued multivalent meromorphic harmonic and
orientation preserving functions in outside of the unit disc. These
coefficient conditions are also shown to be necessary if the coeffi-
cients of the analytic part of the harmonic functions are positive and
the coefficients of the co-analytic part of the harmonic functions are
negative. We then determine the extreme points, distortion bounds,
convolution and convex combination conditions for these functions.

1. Introduction

A continuous functions f = u + iv is a complex valued harmonic
function in a domain D C 2 if both u and v are real harmonic in D.
In any simply connected domain we write f = h + ¢ where h and g are
analytic in D. A necessary and sufficient condition for f to be locally
univalent and orientation preserving in D is that |A'| > |¢'| in D (sec
[2]). Hengartner and Schober [3], investigated functions harmonic in the
exterior of the unit disk U = {z: |z| > 1}, among other things they
showed that complex valued, harmonic, orientation preserving univalent
mapping f, defined in U and satisfying f(o00) = oo, must admits the
representation

1) f(z) = h(2) +9(z) + Alog|z,

where

(2) h(z) = az + Zan 27" g(z) =Bz 4+ an z "
n=1 n=1
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0 < B8] < e, and a(z) = fz/f- is analytic and satisfies |a(z)| < 1 for
z € U. We call h(z) the analytic part and g(z) the co-analytic part of
the harmonic function f(z). Recently Jahangiri [4], assumed o = 1 and
B = 0 and removed the logarithmic singularity by letting A = 0 in the
representation of (1), and focused the study to the family of harmonic
meromorphic functions.

For fixed positive integer m and 0 < a < 1, we let My(m, ) denote
the family of multivalent meromorphic harmonic functions of the form

3)
- Rt 00
f(z) = h(z)—l—g(z) = zm+zan+m-—1 5~ n—m+l + an+m_1 Z——n—m—;—l’

n=1 n=1

z € U and for some real ¢, the function f(z) satisfies the condition

ITAON .
(4) Re { (14 e)Z""2 —me™ ) > ma, z€U.
7 f(2)
For the harmonic functions f = h + g in (3), we define f (z) = % f(z)
and 7 = %(z), with z = re®®, r > 1, and @ is real. We further let
Mz (m,a) denote the subclass of My (m, «) consisting of multivalent
meromorphic harmonic functions of the form

(5)

(e8] o0
f(2) = h(2)+9(2) = Zm+z Gnm-y 2" — Z bntm—1 277,

n=1 n=1

nim—1 >0, bpym—-1 >0, and z € U.
Ahuja and Jahangiri [1] among other things proved that if f = h+7
is of the form (3) and satisfies the coefficient condition

(6)

Z {n+28 i_Z; — 1|an+m—1| + nJng:Z; — 1|bn+m_1|} <1,

then f is orientation preserving, m—valent and starlike of order « in
U. They proved the condition (6) is also necessary for starlikeness of
the functions f = h + g of the form (5). A multivalent meromorphic
harmonic function of the form (3) is said to be starlike of order o in U
if % arg f (rew) > ma,z € U. In this note we look at certain subclass
of Mg(m,a) and obtain sufficient condition for functions to be in the
class and also we prove that the coefficient condition is necessary for
functions in Mz(m, ). Finally we characterize the extreme points for

n=1
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Mz (m, a) and prove closure properties under convolution and convex
combinations.

2. Coefficients bounds

In this section we obtain coefficient bounds, distortion bounds and
extreme points for functions in these classes.

THEOREM 1. Let f = h + g be given by (3).
o0
If > (n+m—1) (lantm=-1| + |bn+m—1|) < m, where m > 1, then the
n=1
harmonic functions f is sense preserving in U and f € My (m), the class
of multivalent meromorphic harmonic functions.

Proof. To show that f is orientation preserving, we need to show that
la(2)] =|fz /f:l <1, z€U.

We have |a(2)| = |f5 /f| < Z,Eig < 1, hence
o0
Y —m+Dbppm—1 27
n=1
la(z)] = 5=
mzm L4+ Y (—n—m+1) apym_127%™
n=1
o0
- Z (n +m— l)bn+m—1 zTnTm
— n=1
[o,0]
mz™ 1l — S (n+m—1) appm-12""""
n=1
o0
Zl(n +m - 1)lbn+m—1[
< s <1,
m— Z (n +m - 1)|a'n+m——1|
n=1
so f is orientation preserving in U. 0

In the next theorem, we give a sufficient coefficient condition for the
functions of the form (3) to be in My (m, «).

THEOREM 2. Let f = h + G be of the form (3), and satisfies the
condition

(7)
X (2n+m(3+a)—2
Z{ m(l — )

2n+m(l — )
m(l — o)

—2
’an+m—1| + lbn+m—1‘} S 1)

n=1
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then f is harmonic, orientation preserving and f € Mg(m,a), 0 < a <
1, zeU.
Proof. To prove f € Mg(m,a), by definition, we only need to show

that the condition (4) holds for f. Substituting h + g for f in (4), it
suffices to show that

(8) Re { (14 €)(zh'(2) — 29 (2)) — m(a + €®)(h(2) + g(2)) } >0,

h(z) + g(2)

where h'(2) = %h(z) and g'(z) = —a‘%g(z). Substituting for h, g, A and
g in (8), and dividing by m(1 — a)2™, we obtain Re{A(z) / B(z)} >0,
where

A(z)
o~ m(1l+ o+ 2e) + (n — 1)(1 + %) —n—2m+1
Z (= a) Untm-1 2
n=1 @
o .
m(l — (n —1)(1+€*)- ()t
+ Z 1 — a) n+m—1 zm
n=1
and
B(z)
oo oo \—n—m+1
- Z
- 1+ Zan+m—l Zmnm2mtl Z brtm—1 (_)zm—
n=1 n=1

Using the fact Re(w) > 0 if and only if |[14+w| > |1—w| in U, substituting
for A(z) and B(z) gives

|A(2) + B(2)| - |A(2) — B(2)]

m .
2m(o + €) + (n — 1)(1 + &%) I
n=1 m(l — o)
2m(l —a)+ (n—1)(1 + e“j’)_ (z)—n-mtl
+ Z 1 _ a) n+m——1 T
3 @m+n—1)(1+e?) —n—2m+1
T Z Gnim-1 2
n=1 m(l - a)
X0
n— 1)(1 + ew) (3)—n—m+1
* Z m(l — a) ntm-1 m



Starlikeness of multivalent meromorphic harmonic functions 557

_ 2_iQm(a—Fl)-l—Q(n—l)

—-n—2m+1
m(l — a) lanym—1] |2]

|brrm—1] |Z|_n_2m+1

3 §;2m(1—a)+2(n—1)

o m(l — )
o0
22m+n—1) —n—2m+1
7;1 m(l — a) |antm-1] |2|
o0
2(n—1 —n—9m
-2 ﬁlbmm—ll |2| T 2m
n=1
[e o]
2n+m3+a)—2
> 2{1 - Z m((l — a)) |lan4m-1]
n=1
_i2n+m(1—a)—2|b |
] m(l — Ot) n+m~1{ (-
The non-negativeness of the above expression follows from (7). O

In the following theorem we prove that the condition (7) is also nec-
essary for functions to be in Mz (m,a).

THEOREM 3. Let f = h+ g be given by (5). Then f € Mzg(m,a) if
and only if the inequality (7) holds for the coefficients of f = h + §.

Proof. In view of Theorem 2, we only need to prove the only if part
of the theorem. Since My(m,a) C My(m,a), we wish to shows that
[ ¢ Mg(m,a) if the condition (7) does not hold. If f € Mgz(m,a),
then by (4) the condition (8) must be satisfied for all values of z in
U. Substituting for h,g, A" and ¢ in (8) and choosing the values of
z on the positive real axis where z = r > 1, we are required to have

Re {P(z)/Q(z)} > 0, where

P(ry= m (1—a)—Z[n+m(1+a)—1
n=1

+ €?@m +n—1)]|ansm_1|r 2

[n+m(l—a) =1+ eP(n—1)]|bpym_|r "2+

NE

1

[

n
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and

00 oo
Q(”') = 1 + Z ‘an+m—1|7'_n_2m+1 _ Z |bn+m—1|7'_n_2m+1-

n=1 n=1

For Re (e*?) = |e*®| = 1 the required condition Re {P(r)/Q(r)} > 0 is
equivalent to
9) - -

1- £ Bpean e - § Sl i

o
14+ 3 (lantm—1] = [bptm—1[)r—n-2m+1
n=1

—n—2m+1

If the condition (9)does not hold, then P(r) is negative for r sufficiently
close to 1. Thus there exists a z, = r, > 1 for which the quotient
P(r)/Q(r) is negative. This contradicts the required condition for f €
Mz (m, «) and so proof is complete. a

COROLLARY 1. The function in Mg(m, o) are starlike of order 13<.

Proof. The proof is straight forward, substituting —112‘2 for o in (6) to

obtain

i[n— 1+m (1 + 1“;“>]|an+m_1|

n=1
= 1+ a
+n§1{n —1+m (1 T )”bn+m—1l
14+«
< [1-
< (1-32),
which is equivalent to the required condition (7). O

In the following theorem we determine the distortion bounds for func-
tions in the class Mz (m, o).

THEOREM 4. If f(z) € Mzg(m,0) for 0 < a < 1 and [z| = r > 1,
then

™ —m(l—a)r ™ < |f()] < +m(l —a)r™™.
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Proof. Let f(z) € Mz(m,a). Taking the absolute value of f we ob-
tain

*© 0o
|f(z)| = 2"+ 2 Antm—1 ,—n—mtl Z bptm—1 (2)—n—m+1
0o
< M Z(an+m—1 + bpymoy) rTmH
n=1
00
n=1
00
< MY A(n 4 M3+ @) = Dlantmes

n=1
+(2n +m(1 - a) = 2)|bpsm-1l}
< rMmam(l—a)yr™,
The proof for the left inequality uses a similar argument and for the sake
of brevity we omit it. O

3. Extreme points

We use the coefficients bounds obtained in section 2 to examine
the extreme points for functions Mz (m, a) and determine the extreme
points of the closed convex hull of Mz(m, o) denoted by clco Mz(m, a).

THEOREM 5. f € Mz(m, ) if and only if f can be expressed as

(10) .f = Z(Xn+m—1hn+m—1 + Yn+m—lgn+m—1)7

n=0
where
ZE (7, hm-1(2) = 2™,
'm(l _ a)z—-n-—m+l

2n+m(3+a)—2

m

haem—1(2) = 2 (n=1,2,3,...),

gm-1(2) = 2",
B m(l . a)z—n—-m-ﬂ
2n+m(l—-a)—2

m 7 (n=1,2,3...),

Intm-1(2) =z

S
Z(Xn—l-m—l + Yn+m—1) =1, Xntm-1 = 0 and Yy4m—1 > 0.

n=0
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In particular, the extreme points of clco Myg(m,a) are {hpym-1},
{gn—’rm—l}, (n=0,1,2,... )

Proof. Note first that for functions f of the form (10) we may write

e o]

f(Z) = Z(Xn+m—1hn+m—1(z) + Yn+m—1gn+m—1(z))
n=0

f(z) = Xme1hm-1(2) + Ym-19m-1(2))
> m . Ml —a)z
+;X"+m‘1 (z o tmBra) = 2)

2 m(l—a)z "™ o nmi1
Yn m— m—
+nz=:1 * 1(2 mtmi—a) -2

x

= Z (Xn+m— 1Yn+m——l)zm

n=0
—n-m+1

(1-a)z~
X _ —n—m-+1
+Z{271-{—7713-1-04) g tnim—1%
(1_ )—n -m+1
2n+m(l—a)—2

z—n m+1Yn+m 1( )

———T— m+1}

Then by (7)
m(l - Oé)Xn+m_1
2n+mB+a)—2

m(l — a)Yptm-1 }
2n+m(l —a) -2

i{[2n+m 3+a)—2

n=1

+2n +m(1l — a) — 2]

oo

= m(l - a) Z(Xn+m—1 + Yn+m—1)

n=1

= m(l —a)[l = Xm-1+Ym-1] <m(l - o),

and so f € Mz(m, a).
Conversely, suppose that f € Mz(m, o). Then we write

o0

flz)=2""+ z:{avwm—lZ_n_m—H - bn+m—1(z)—n_m+1}

n=1
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where anym-1 >0, bpym-1 >0, and

kad m(l — « m(l — «
3 (1-a) (1-0)

m— b _1 <1.
= 2n+m(3+a)—2an+ 1t an+m(l—a)—2 "™ 1=
Setting
2n+m(3+a) —2 2n+m(l —a)—2
X -1 = Y -1 =
n+m-—1 m(l _ a) a‘nd n+m—1 m(l _ a) ]
n=1,2,...)0< X1 <1and
[e 0]
Ym—l =1- Xm—l - Z(Xm-}-n—l + Yn+m—1)a
n=1
we get
x0
f(z) = Z(Xn+m—1hn+m—l(z) + Yotm-19n+m-1(2))
n=1
as required. O

4. Convolution and convex combinations

In this section, we show that the class M#(m, a) is invariant under
convolution and convex combinations of its members. For harmonic
functions

0o 0o
f(z) =" + Z an+m_1z_"_m+1 - Z bn+m_1(2)_”_m+1
n=1 n=1

and

oo o0
F(z)=2"+ Z An+m—lz_n—m+1 - Z Bn+m—1(7)—n_m+1a
n=1 n=1

we define the convolution of f and F as

(fxF)(2) = f(2)x F(2)

[e's)
- m —-n—m+1
= =z +§ An+m-1Antm-12

n=1

00
(11> - Z bn+m—an+m—1(E>_n_m+l~
n=1

THEOREM 6. If f and F belong to Mz(m, o) so does the convolution
function f = F.
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Proof. Let

o0 o0
flz)=2"+ Z Ungpm—12 "ML — Z bnym_1(Z)" "L

n=1 n=1
and
oo o0
—n—m+1 =\ —n—m-+1
F(2)=2" 4+ Anpm-12 "™ =3 " Buim_1 (7)Y,
n=1 n=1

be in Mz (m, «). Then the convolution of f and F is given by (11). Note
that Ayim—1 <1 and Bpjm_1 < 1, since f € Myz(m,a). Therefore we
can write

Z[Zn +m(3+ @) - 2]an+m-14n+m-1

n=1

o
+> " [2n+m(1 — a) = 2bnsm-1Bnim-1

=1
OOn o0
< Z[2n +m(3+ a) — 2]antm-1+ Z[2n +m(l — a) - 2]brym-1
n=1 n=1
< m(l - a),
hence f *x F € Mg(m, a) by theorem (3). O

THEOREM 7. The class Mz(m, ) is closed under convex combina-
tion.

Proof. For i = 1,2,..., suppose that f;(z) € Mz(m,a), where fi(2)
is given by

f( —Z+Zan+m lzz —nom+l ZbVH—m 17,( ) ne m+1

n=1 n=1

Anim—14 = 0, bnym-1,i 2> 0.

Then by (7), we have

00
2(277' + m(3 + a) - 2)‘an+m—1, 1'
n=1

o0

+> @2+ m(l— ) — 2)|bpgm-1, i| < m(1 - a).
n=1
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o

For > t; = 1, 0 < t; < 1, the convex combination of f;(z), may be
i=1

written as

D_tfilz) ="+ )t (Z an+m_1,z‘> gnmmL
i=1 =1 -
WIS

Then by (12),

WK

(2n+m(3+a)-2) (Z ti Gntm-1, z>

i=1

(2’1’L + m(l - a) - 2) (E tibn+m—1, z)

i=1

1

3
[

+

M]3

Il

1

o0
t12[2n+m3+a)—2)|an+m Ll

il
078

i=1 n=1
+(2n +m(1 — a) — 2)ti|bprm-1, zl]
< Y tm(l-a) <m(l-a).
=1
Thus > t,fi(2) € My (m, ), which completes the proof. O
=1
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