ESSENTIAL NORMS AND STABILITY CONSTANTS OF WEIGHTED COMPOSITION OPERATORS ON C(X)

HIROYUKI TAKAGI, TAKESHI MIURA AND SIN-EI TAKAHASI

ABSTRACT. For a weighted composition operator uC_{φ} on C(X), we determine its essential norm and the constant for its Hyers-Ulam stability, in terms of the set $\varphi(\{x \in X : |u(x)| \ge r\})$ (r > 0).

0. Introduction

Let X be a compact Hausdorff space and let C(X) denote the Banach space of all continuous functions on X with the supremum norm. For any $u \in C(X)$, we put $S(u) = \{x \in X : u(x) \neq 0\}$. Fix a function $u \in C(X)$ and a selfmap φ of X which is continuous on S(u). Then u and φ induce an operator uC_{φ} defined by

$$(uC_{\varphi}f)(x) = u(x) f(\varphi(x)) \qquad (x \in X)$$

for all $f \in C(X)$. Clearly, uC_{φ} is a bounded linear operator on C(X). We call uC_{φ} a weighted composition operator on C(X). The properties of this operator are studied by Kamowitz [5], Singh and Summers [10], Feldman [2] and many other mathematicians (see also [4, 11]). The book [9] is a nice reference on this type of operator.

In this paper, we determine two kinds of constants of uC_{φ} . One is the essential norm of uC_{φ} , which is computed in Section 1 (Theorem 1). The other is the constant for the Hyers-Ulam stability of uC_{φ} . In Section 2, we determine it by comparing with the norm of the inverse of the one-to-one operator induced by uC_{φ} . Indeed, we remark that a bounded linear operator between Banach spaces has the Hyers-Ulam stability if and only if it has closed range (Theorem 2). Using this fact, we also give a necessary and sufficient condition for uC_{φ} to have the

Received September 28, 2002.

²⁰⁰⁰ Mathematics Subject Classification: 47B33, 34K20.

Key words and phrases: weighted composition operator, essential norm, Hyers-Ulam stability, closed range.

Hyers-Ulam stability (Theorem 3). The results on uC_{φ} in this paper are related to the set $\varphi(\{x \in X : |u(x)| \ge r\})$, where r is a positive number.

1. Essential norm

Let A be a Banach space and \mathcal{K} be the set of all compact operators on A. For any bounded linear operator T on A, the essential norm of T means the distance from T to \mathcal{K} in the operator norm, namely

$$||T||_e = \inf\{||T - S|| : S \in \mathcal{K}\}.$$

Clearly, T is compact if and only if $||T||_e = 0$. As is seen in [8], the essential norm plays an interesting role in the compact problem of concrete operators.

We are concerned with the case that T is a weighted composition operator uC_{φ} on C(X). In [5], Kamowitz has showed that uC_{φ} is compact if and only if

for each connected component C of S(u), there exists an open set $U \supset C$ such that φ is constant on U.

As is mentioned in [4, 10], this condition is equivalent to the following:

(1) For any
$$r > 0$$
, $\varphi(\lbrace x \in X : |u(x)| \ge r \rbrace)$ is finite.

From this point of view, we compute the essential norm of uC_{φ} .

Theorem 1. Let uC_{φ} be a weighted composition operator on C(X). The essential norm of uC_{φ} is given by

(2)
$$||uC_{\varphi}||_e = \inf\{r > 0 : \varphi(\{x \in X : |u(x)| \ge r\}) \text{ is finite }\}.$$

Considering the case $||uC_{\varphi}||_e = 0$ in (2), we know that (1) is necessary and sufficient for uC_{φ} to be compact.

Proof. Denote the right side of (2) by ρ . We first show that $\|uC_{\varphi}\|_{e} \geq \rho$. If $\rho = 0$, there is nothing to prove, and so we assume $\rho > 0$. Take $\varepsilon > 0$ arbitrarily. Since $\varphi(\{x \in X : |u(x)| \geq \rho - \varepsilon\})$ is infinite, we find a sequence $\{x_k\}$ in X such that $|u(x_k)| \geq \rho - \varepsilon$ and $\varphi(x_k) \neq \varphi(x_l)$ $(k \neq l)$. By using the fact that X is a compact Hausdorff space, we can select a subsequence $\{x_{k_n}\}$ of $\{x_k\}$ such that each $\varphi(x_{k_n})$ has an open neighborhood U_n and $\{U_n\}$ is pairwise disjoint. For simplicity, we write $x_n = x_{k_n}$ $(n = 1, 2, \ldots)$. For each n, we use Urysohn's lemma to get a function $f_n \in C(X)$ such that $0 \leq f_n \leq 1$, $f_n(\varphi(x_n)) = 1$ and $f_n(X \setminus U_n) = \{0\}$. Then $||f_n|| = 1$ for $n = 1, 2, \ldots$, and our choice of $\{U_n\}$ and $\{f_n\}$ shows that $f_n(x) \to 0$ for each $x \in X$. These facts imply that $\{f_n\}$ converges weakly to zero in C(X) (see [1, Corollary IV.6.4]). Now,

take a compact operator S on C(X) so that $||uC_{\varphi} - S|| < ||uC_{\varphi}||_e + \varepsilon$. Then we have

$$||uC_{\varphi}||_{e} > ||uC_{\varphi} - S|| - \varepsilon \ge ||uC_{\varphi}f_{n} - Sf_{n}|| - \varepsilon$$

$$\ge ||uC_{\varphi}f_{n}|| - ||Sf_{n}|| - \varepsilon \ge |u(x_{n})f_{n}(\varphi(x_{n}))| - ||Sf_{n}|| - \varepsilon$$

$$> \rho - \varepsilon - ||Sf_{n}|| - \varepsilon$$

for all $n=1,2,\ldots$ Since a compact operator maps weakly convergent sequences into norm convergent ones, it follows $\|Sf_n\| \to 0$. Hence $\|uC_{\varphi}\|_e \geq \rho - 2\varepsilon$. Since ε was arbitrary, we obtain $\|uC_{\varphi}\|_e \geq \rho$.

For the opposite inequality, take $\varepsilon > 0$ arbitrarily. Put $F = \{x \in X : |u(x)| \le \rho + \varepsilon\}$ and $G = \{x \in X : |u(x)| \ge \rho + 2\varepsilon\}$. Since F and G are disjoint closed sets, Urysohn's lemma gives a function $g \in C(X)$ such that $0 \le g \le 1$, $g(F) = \{0\}$ and $g(G) = \{1\}$ (we understand $g \equiv 1$ if $F = \emptyset$, or $g \equiv 0$ if $G = \emptyset$). Put v = ug. Then $v \in C(X)$ and φ is continuous on S(v), because $S(v) \subset S(u)$. Thus we can define a weighted composition operator vC_{φ} on C(X). Here we observe that vC_{φ} has finite rank: Since $X \setminus F \subset \{x \in X : |u(x)| \ge \rho + \varepsilon/2\}$, the definition of ρ implies that $\varphi(X \setminus F)$ is a finite set. If $\varphi(X \setminus F)$ is empty, then $G \subset X \setminus F = \emptyset$ and so $v \equiv 0$, which says that vC_{φ} is a zero operator and has finite rank. Otherwise we can write $\varphi(X \setminus F) = \{y_1, \dots, y_m\}$, where y_1, \dots, y_m are distinct. For $i = 1, \dots, m$, put $F_i = \{x \in X \setminus F : \varphi(x) = y_i\}$ and define a function v_i on X by

$$v_i(x) = \begin{cases} v(x) & \text{if } x \in F_i \\ 0 & \text{if } x \in X \setminus F_i. \end{cases}$$

Since F_j is open in $X \setminus F$ and so in X for j = 1, ...m, it follows that v_i is continuous at each point in $X \setminus F$. On the other hand, from the fact that v vanishes on F, it is shown that v_i is continuous at each point in F. Hence $v_i \in C(X)$. In addition, the equation $v = \sum_{i=1}^m v_i$ shows that

$$vC_{\varphi}f = \sum_{i=1}^{m} f(y_i) v_i$$

for all $f \in C(X)$. This says that $\{v_1, \ldots, v_m\}$ spans the range of vC_{φ} . Hence vC_{φ} has finite rank. Noting that vC_{φ} is compact, we have

$$\begin{aligned} \|uC_{\varphi}\|_{e} & \leq & \|uC_{\varphi} - vC_{\varphi}\| = \sup_{\|f\| \leq 1} \|uC_{\varphi}f - vC_{\varphi}f\| \\ & = & \sup_{\|f\| \leq 1} \sup_{x \in X} |u(x)f(\varphi(x)) - v(x)f(\varphi(x))| \end{aligned}$$

$$= \sup_{\|f\| \le 1} \sup_{x \in X} |u(x) - v(x)| |f(\varphi(x))|$$

$$\le \sup_{x \in X} |u(x) - v(x)| = \sup_{x \in X} |u(x)| |1 - g(x)|$$

$$\le \sup_{x \in X \setminus G} |u(x)| \le \rho + 2\varepsilon.$$

Since ε was arbitrary, we get $||uC_{\varphi}||_{e} \leq \rho$. This completes the proof. \square

2. Hyers-Ulam stability

Let A and B be Banach spaces and T be a mapping from A into B. We say that T has the Hyers-Ulam stability, if there exists a constant K with the following property:

For any
$$g \in T(A)$$
, $\varepsilon > 0$ and $f \in A$ satisfying $||Tf - g|| \le \varepsilon$, we can find an $f_0 \in A$ such that $Tf_0 = g$ and $||f - f_0|| \le K\varepsilon$.

We call K an HUS constant for T, and denote the infimum of all HUS constants for T by K_T . These concepts are based on the research by Hyers [3] or Ulam [14], and are introduced in the paper [7]. One of their concrete examples may be found in the papers [6, 12].

In this paper, we focus on the case that T is a bounded linear operator. In the sequel, we use the symbol $\mathcal{N}(T)$ to denote the kernel of T, and consider the induced one-to-one operator \tilde{T} from the quotient space $A/\mathcal{N}(T)$ into B:

$$\tilde{T}(f + \mathcal{N}(T)) = Tf$$
 $(f \in A).$

The inverse operator \tilde{T}^{-1} from T(A) into $A/\mathcal{N}(T)$ is closely related to the Hyers-Ulam stability of T.

THEOREM 2. Let A and B be Banach spaces and T be a bounded linear operator from A into B. Then the following statements are equivalent:

- (a) T has the Hyers-Ulam stability.
- (b) T has closed range.
- (c) \tilde{T}^{-1} is bounded.

Moreover, if one of (hence all of) the conditions (a), (b) and (c) is true, then we have $K_T = \|\tilde{T}^{-1}\|$.

Proof. The equivalence of (b) and (c) is well known as an application of the open mapping theorem (see [13, Theorem IV.5.9]). We here show the equivalence of (a) and (c).

By the linearity of T, T has the Hyers-Ulam stability if and only if there exists a constant K with the following property:

For any
$$\varepsilon > 0$$
 and $f \in A$ satisfying $||Tf|| \le \varepsilon$,

we can find an
$$f_0 \in \mathcal{N}(T)$$
 such that $||f - f_0|| \leq K\varepsilon$.

Another way of stating this property is to say:

For any $f \in A$, we can find an $f_0 \in \mathcal{N}(T)$ such that $||f - f_0|| \le K||Tf||$.

If (3) holds, then

$$||f + \mathcal{N}(T)|| \le K||Tf||$$

for all $f \in A$, and hence \tilde{T}^{-1} is bounded and $\|\tilde{T}^{-1}\| \leq K$. This shows (a) \Rightarrow (c). If we note that K is an arbitrary HUS constant for T, we reach

$$\|\tilde{T}^{-1}\| \le K_T.$$

Conversely, assume that \tilde{T}^{-1} is bounded and $\|\tilde{T}^{-1}\| < L$. For any $f \in A$, we have

$$||f + \mathcal{N}(T)|| = ||\tilde{T}^{-1}(Tf)|| \le ||\tilde{T}^{-1}|| \, ||Tf|| < L||Tf||,$$

and so, we can find an $f_0 \in \mathcal{N}(T)$ such that

$$||f - f_0|| < L||Tf||.$$

Thus (3) holds, and so T has the Hyers-Ulam stability. Hence (c) implies (a). More precisely, we have now proved that L is an HUS constant for T whenever $\|\tilde{T}^{-1}\| < L$. Hence $K_T \leq \|\tilde{T}^{-1}\|$. Together with (4), we obtain $K_T = \|\tilde{T}^{-1}\|$. The proof is completed.

Now we characterize the weighted composition operators on ${\cal C}(X)$ which have the Hyers-Ulam stability.

THEOREM 3. Let uC_{φ} be a weighted composition operator on C(X). Then uC_{φ} has the Hyers-Ulam stability if and only if there exists a positive constant r such that

(5)
$$\varphi(\lbrace x \in X : |u(x)| \ge r \rbrace) = \varphi(S(u)).$$

Moreover, if R is the supremum of all r such that (5) holds, then $K_{uC_{\varphi}} = 1/R$.

For the proof, we use the following lemma.

Lemma. Let uC_{φ} be a weighted composition operator on C(X). Then we have

$$||f + \mathcal{N}(uC_{\varphi})|| = \sup \{ |f(y)| : y \in \varphi(S(u)) \},\$$

for any $f \in C(X)$.

Proof. Pick $f \in C(X)$ and put $\alpha = \sup \{ |f(y)| : y \in \varphi(S(u)) \}$. For any $h \in \mathcal{N}(uC_{\varphi})$, we have h(y) = 0 for all $y \in \varphi(S(u))$, and so

$$\alpha = \sup \{ |f(y) + h(y)| : y \in \varphi(S(u)) \} \le ||f + h||.$$

Hence $\alpha \leq ||f + \mathcal{N}(uC_{\varphi})||$.

To verify $||f + \mathcal{N}(uC_{\varphi})|| \leq \alpha$, take $\varepsilon > 0$ arbitrarily. Let F be the closure of $\varphi(S(u))$, and put $G = \{y \in X : |f(y)| \geq \alpha + \varepsilon\}$. It is easy to see that F and G are disjoint closed sets in X. It follows from Urysohn's lemma that there exists a $g \in C(X)$ such that $0 \leq g \leq 1$, $g(F) = \{0\}$ and $g(G) = \{1\}$. Put h = fg. Clearly, $h \in C(X)$ and h(y) = 0 for $y \in \varphi(S(u))$. This implies $h \in \mathcal{N}(uC_{\varphi})$. On the other hand, we have

$$|f(x) - h(x)| = |f(x)| \, |1 - g(x)| \le \left\{ \begin{array}{ll} 0 & \text{if } x \in G \\ \alpha + \varepsilon & \text{if } x \in X \setminus G. \end{array} \right.$$

Hence

$$||f + \mathcal{N}(uC_{\varphi})|| \le ||f - h|| \le \alpha + \varepsilon.$$

Since $\varepsilon > 0$ was arbitrary, we get $||f + \mathcal{N}(uC_{\varphi})|| \leq \alpha$, concluding the proof.

Proof of Theorem 3. Suppose that there exists an r > 0 that satisfies (5). We use Lemma and compute as follows:

$$||f + \mathcal{N}(uC_{\varphi})|| = \sup \{ |f(y)| : y \in \varphi(S(u)) \}$$

$$= \sup \{ |f(y)| : y \in \varphi(\{x \in X : |u(x)| \ge r\}) \}$$

$$= \sup \{ |f(\varphi(x))| : |u(x)| \ge r \}$$

$$= \sup \left\{ \frac{1}{|u(x)|} |(uC_{\varphi}f)(x)| : |u(x)| \ge r \right\}$$

$$\leq \frac{1}{r} \sup \{ |(uC_{\varphi}f)(x)| : |u(x)| \ge r \}$$

$$\leq \frac{1}{r} ||uC_{\varphi}f||,$$

for all $f \in C(X)$. Hence $u\widetilde{C}_{\varphi}^{-1}$ is bounded and $\|u\widetilde{C}_{\varphi}^{-1}\| \leq 1/r$. According to Theorem 2, uC_{φ} has the Hyers-Ulam stability. If r is taken all over the numbers satisfying (5), we obtain

$$\|u\widetilde{C}_{\varphi}^{-1}\| \le \frac{1}{R}.$$

Conversely, suppose that uC_{φ} has the Hyers-Ulam stability. By Theorem 2, $u\widetilde{C}_{\varphi}^{-1}$ is bounded. Assume $\|u\widetilde{C}_{\varphi}^{-1}\| < 1/r$ and

$$\varphi(\lbrace x \in X : |u(x)| \ge r \rbrace) \ne \varphi(S(u))$$

for some r > 0. Then there is a point $y_0 \in \varphi(S(u))$ with $y_0 \notin \varphi(\{x \in X : |u(x)| \ge r\})$. Here $\varphi(\{x \in X : |u(x)| \ge r\})$ is a closed set, because $\{x \in X : |u(x)| \ge r\}$ is a compact subset of S(u) and φ is continuous on S(u). By Urysohn's lemma, we find an $f_0 \in C(X)$ such that $0 \le f_0 \le 1$, $f_0(y_0) = 1$ and $f_0(y) = 0$ for all $y \in \varphi(\{x \in X : |u(x)| \ge r\})$. Then we have

$$|(uC_{\varphi}f_0)(x)| = |u(x)| |f_0(\varphi(x))| \le \begin{cases} |u(x)| \cdot 0 = 0 & \text{if } |u(x)| \ge r \\ r|f_0(\varphi(x))| \le r & \text{if } |u(x)| < r, \end{cases}$$

and so $||uC_{\varphi}f_0|| \leq r$. Hence we use Lemma to see that

$$1 = |f_0(y_0)| \le \sup\{|f_0(y)| : y \in \varphi(S(u))\} = ||f_0 + \mathcal{N}(uC_{\varphi})||$$
$$= ||u\widetilde{C}_{\varphi}^{-1}(uC_{\varphi}f_0)|| \le ||u\widetilde{C}_{\varphi}^{-1}|| ||uC_{\varphi}f_0|| < \frac{1}{r} \cdot r = 1,$$

which is a contradiction. Thus we conclude that if $\|u\widetilde{C}_{\varphi}^{-1}\| < 1/r$, then (5) holds. This implies $1/R \leq \|u\widetilde{C}_{\varphi}^{-1}\|$. Together with (6), we get $\|u\widetilde{C}_{\varphi}^{-1}\| = 1/R$. The equality $K_{uC_{\varphi}} = 1/R$ follows from Theorem 2.

The next corollaries are the immediate consequences of Theorem 3.

COROLLARY 1. Let uC_{φ} be a weighted composition operator on C(X). If u has an inverse $u^{-1} \in C(X)$, then uC_{φ} has the Hyers-Ulam stability and $K_{uC_{\varphi}} \leq ||u^{-1}||$. In addition, if φ is one-to-one, then $K_{uC_{\varphi}} = ||u^{-1}||$.

Proof. Put $r=1/\|u^{-1}\|$. Then we have $|u(x)| \geq r$ for all $x \in X$. It follows that $\{x \in X : |u(x)| \geq r\} = X = S(u)$, and so (5) holds. Hence uC_{φ} has the Hyers-Ulam stability and $K_{uC_{\varphi}} \leq 1/r = \|u^{-1}\|$. Here we also note that $\|u^{-1}\|$ is equal to the supremum of all r satisfying $\{x \in X : |u(x)| \geq r\} = S(u)$. Hence if φ is one-to-one, then $\|u^{-1}\|$ is the supremum of all r such that (5) holds, and so $K_{uC_{\varphi}} = \|u^{-1}\|$. \square

COROLLARY 2. Let $u \in C(X)$ and $M_u : f \to u \cdot f$ be a multiplication operator on C(X). Then M_u has the Hyers-Ulam stability if and only if S(u) is a compact set. Moreover, we have $K_{M_u} = 1/\inf\{|u(x)| : x \in S(u)\}$.

Proof. Consider the case that φ is the identity map of X. Then $uC_{\varphi}=M_u$. Hence Theorem 3 says that M_u has the Hyers-Ulam stability if and only if there exists an r>0 such that $\{x\in X: |u(x)|\geq r\}=S(u)$. If there exists such an r>0, then S(u) is clearly a compact set. Conversely, if S(u) is compact, then |u| attains its minimum r (>0) on S(u) and we get $\{x\in X: |u(x)|\geq r\}=S(u)$. Thus we proved the first assertion. Noting that the supremum of all r such that $\{x\in X: |u(x)|\geq r\}=S(u)$ is equal to $\inf\{|u(x)|:x\in S(u)\}$, we obtain $K_{M_u}=1/\inf\{|u(x)|:x\in S(u)\}$.

REMARK. In Corollary 1, if φ is not one-to-one, the equality $K_{uC_{\varphi}} = \|u^{-1}\|$ does not necessarily hold. Indeed, let X = [0,1] and $u(x) = (x-1/2)^2 + 1$ for all $x \in X$. Put

$$\varphi_1(x) = \begin{cases} 0 & \text{if } x \in [0, 3/4] \\ 4x - 3 & \text{if } x \in (3/4, 1]. \end{cases}$$

Then it is easy to see that $[0,1] = \varphi_1(S(u)) = \varphi_1(\{x \in X : |u(x)| \ge r\})$ for all $r \le 17/16$. We also note that if r > 17/16 then $\varphi_1(\{x \in X : |u(x)| \ge r\}) \subseteq [0,1]$. Hence $K_{uC_{\varphi_1}} = 16/17$ by Theorem 3. Therefore we get $K_{uC_{\varphi_1}} < 1 = ||u^{-1}||$.

Note that if we consider the function

$$\varphi_2(x) = \begin{cases} 0 & \text{if } x \in [0, 1/2] \\ 2x - 1 & \text{if } x \in (1/2, 1], \end{cases}$$

then we see that φ_2 is not one-to-one but $K_{uC_{\varphi_2}} = 1 = ||u^{-1}||$ in a way similar to the above.

References

- [1] N. Dunford and J. T. Schwartz, Linear Operators Part I, Wiley, 1988.
- [2] W. Feldman, Compact weighted composition operators on Banach lattices, Proc. Amer. Math. Soc. 108 (1990), 95–99.
- [3] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222–224.
- [4] J. E. Jamison and M. Rajagopalan, Weighted composition operator on C(X, E),
 J. Operator Theory 19 (1988), 307-317.
- [5] H. Kamowitz, Compact weighted endomorphisms of C(X), Proc. Amer. Math. Soc. 83 (1981), 517-521.
- [6] T. Miura, S.-E. Takahasi and H. Choda, On the Hyers-Ulam stability of real continuous function valued differentiable map, Tokyo J. Math. 24 (2001), 467– 476.
- [7] T. Miura, S. Miyajima and S.-E. Takahasi, Hyers-Ulam stability of linear differential operator with constant coefficients, Math. Nachr. 258 (2003), 90–96.

- [8] J. H. Shapiro, The essential norm of a composition operator, Ann. of Math. (2) 125 (1987), no. 2, 375-404.
- [9] R. K. Singh and J. S. Manhas, Composition operators on function spaces, North-Holland, 1993.
- [10] R. K. Singh and W. H. Summers, Compact and weakly compact composition operators on space of vector valued continuous functions, Proc. Amer. Math. Soc. 99 (1987), 66s7-670.
- [11] H. Takagi, Compact weighted composition operators on function algebras, Tokyo J. Math. 11 (1988), 119–129.
- [12] S.-E. Takahasi, T. Miura and S. Miyajima, On the Hyers-Ulam stability of the Banach space-valued differential equation $y' = \lambda y$, Bull. Korean Math. Soc. **39** (2002), no. 2, 309–315.
- [13] A. E. Taylor and D. C. Lay, *Introduction to functional analysis*, 2nd ed. Wiley, 1980.
- [14] S. M. Ulam, *Problems in modern mathematics*, Chap. VI, Science eds, Wiley, 1964.

HIROYUKI TAKAGI, DEPARTMENT OF MATHEMATICAL SCIENCES, FACULTY OF SCIENCE, SHINSHU UNIVERSITY, MATSUMOTO 390–8621, JAPAN *E-mail*: takagi@math.shinshu-u.ac.jp

Takeshi Miura and Sin-Ei Takahasi, Department of Basic Technology, Applied Mathematics and Physics, Yamagata University, Yonezawa 992–8510, Japan

 $\begin{tabular}{ll} E-mail: miura@yz.yamagata-u.ac.jp \\ sin-ei@emperor.yz.yamagata-u.ac.jp \end{tabular}$