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A PRODUCT FORMULA OF
SEIBERG-WITTEN INVARIANTS

YonG SEUNG CHO

ABSTRACT. Let X be a 4-manifold obtained by gluing two sym-
plectic 4-manifolds X;, 7 = 1,2, along embedded surfaces. Using
the gradient flow of a functional on 3-dimensional Seiberg-Witten
theory along the cylindrical end, we study the Seiberg-Witten equa-
tions on X and have a product formula of Seiberg-Witten invariants
on X from the ones on X;, i = 1,2.

Suppose that X1 and X are a closed, oriented 4-manifolds. Let ¥ be a
closed, oriented Riemann surface with genus g(X) > 1. And let ¥ — X;
for ¢+ = 1,2 be smooth embeddings representing homologies of infinite
order. Suppose that the self-intersections X-X in X; are zero. Then there
is a regular neighborhood of ¥ diffeomorphic to D? x X. We have X? and
X2 by removing the interiors of these regular neighborhoods. Denote by
Y the boundary S x 3. There is an orientation reversing diffeomorphism
0X? — 0XY which is identity on ¥ and is complex conjugation on S*
factor. We denote by Z = X,fix X» manifold obtained by gluing X9 and
X9 along the boundary Y into Z with Z — Y = X ][] X¥. Fix metrics
on X? and X7 which have cylindrical ends with orientation preserving
isometric to [~1,00) x Y and [—1,00) x ¥ respectively. Let Z, be the
compact manifold obtained truncating the ends of X? and X§ at s x Y
and s x Y, respectively and then identifying two truncated manifolds
along their common boundary Y. Thus the diffeomorphism type of Z is
independent of s.

From now on we fix Spin® structures P; and P on X? and XJ whose
determinant line bundles restricted to Y are both isomorphic to the
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pullback from % of a line bundle of degree 2 — 2¢g(¥;) on ¥. We choose
small perturbation of monopole equations for X? and X9 so that the
equations on Xy are

Fi =q() +V=1g1(*n + dt An) + v—1n,
DA'l/} = 07

where n is a harmonic 1-form on ¥ and 7] is a compactly supported
self-dual 2-form and ¢, is a smooth function which is 1 on [0,00) x YV
and vanishes off of [-1,00) x Y.

Let Mg, (P1,n,n7) be the moduli space of finite energy solutions
to the perturbed equations with dimension 2d;. In a similar way, we
define the moduli spaces Mg, (Ps,n,77) of finite energy solutions on
Xg with dimension 2d,. Let S be the set of isomorphism classes of
Spin¢ structures P on Z with the property that P |Xr1)= P, P ]ng P,
and $(c1(detP)%(Z) — (2x + 30)(Z)) = 2d. If P € S, for each s > 0
we have the corresponding Spin® structure P, over Z,. For sufficiently
large s, let n = n" + 75 and define the moduli space M4(Ps,n,nt) of
solutions to the perturbed Seiberg-Witten equations

Fi = q() + V=1ps(xn+dt An) +/~1n;,
Day =0,

where ¢, : Z, — [0,1] is the function which is ¢; on X?(s) and ¢ on
X3(s).

For simplicity, we shall write Mg, (P1) and Mg, (P,) for My, (P1,n,9]")
and Mg, (P, n,n5), respectively.

Now we will define the moduli space of solutions to the monopole
equations on non-compact 4-manifolds with ends isometric to [—1, 00) x
Y. We consider only solutions to the equations with finite energy on the
cylinderical end. Let Y = S! x X and let X° be a Riemannian 4-manifold
whose end is orientation-preserving isometric to [—1,00) xY". Let a Spin®
structure P on X° be given and denote the restriction of PtoY by Py.
Then for any solution (A, 1) to the Siberg-Witten equations with respect
to this Spin® structure, there is a temporal gauge for P restricted to the
cylindrical end so that the flow line v satisfies the gradient flow equation.
A finite energy solution is a solution for which an associated flow line
v : [0,00) = C*(Py) satisfies lim;_o. (f(7(t)) — f(7(0))) < co. Here
C*(Py) is the space of pairs of a connection on the determinant line
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bundle of Py and a section of spinor bundle on Y. And f is the function
defined by

£(40) = [ (Pan A+ (b.0u0),
And the difference is
fF(v(8) = F((0))

_/ta(f ) gt
/at/ (FaNA+ (1, 049))

/ / (83 “Fia A <w,aAw>)

= / / (2<*FA,%>+2<—;§,8¢A’¢>‘2<88—13>Q(¢)>)

[ ) <

Intuitively, the finiteness of energy implies that (A, ) approaches to
the static solution as t — oo. Taubes obtains the following :

THEOREM 1. [17]. Let X°,Y, P be given as above. Let (A,1) be
a finite energy solution to the Seiberg-Witten equations associated P.
Then there is a C*°-product structure for ]5|[0’OO)Xy such that in this
product structure (A, ) converges exponentially fast to a static solution.

Let My4(P) be the moduli space of all finite energy solutions to the
Seiberg-Witten equations.
a(P) = {(4,9)|(i) (4,%) is in a temporal gauge on [0, 00) X ¥,
(ii) v(t) = (A(t),4(t)) satisfies the gradient flow equation,
(iii) limy oo f(¥(£)) — f(7(0)) < o0}
Then Mgy(P) is a smooth compact manifold of dimension 2d except

singularity.
Theorem 1 shows the existence of limit of gauge equivalence classes

T(Aa ¢) = hmt—>oo(At, '(/)t)
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The limit defines a continuous map
r: My(P) — R(Y)

to the moduli space of solutions of the Seiberg-Witten equations on Y.

Suppose that (A;, ;) € Mg, (P;) and 71(A1, 1) = ro(Ag, 1) = p €
R(Y). For sufficiently large s, we can make a small modification to
(A1,%1) so that it is equivalent to p € R(Y) on the end [s,00) X ¥
of X?. Making similar modification to (As, 1) allows us to join two
solutions to form (Aq,%1)#(Az,12) on Z, which may not satisfy the
equations on the neck region. But this can be deformed to a solution on

Zs. In fact, we have the following result.

THEOREM 2. Suppose that (A1,v1) and (Az,2) are regular points
of their moduli spaces and suppose that 71,79 are transverse at ((Ay, 1),
(A2, 2)). Then gluing and deforming determine a diffeomorphism

I Mau®) s, Ma(B) —» [T Ma(Po).

di+d2—g(T2)=d P.eSy

Here d; or dy are greater than or equal to g(¥3) and Mg, X, Mg, is the
fiber product

Ma, x¢ Ma, = {((A1,91), (A2, %2))|r1(A1,91) = r2(A2,92)}

This theorem shows that the formal dimension of the moduli space is
as follows:

dimMy(P,) = dimMy, 4+ dimM,, — dimR ().

Let X = X°U (D? x Z) = X°U WP° be a compact symplectic 4-
manifold. The condition on Pxo — X implies that it has an extension
to a Spin€ structure over X. The extended Spin¢ structure differs by an
even multiple of PD[X], which is Poincare dual of [£] € Hy(X, Z).

Now we will consider only 0-dimensional moduli spaces with respect
to an extended Spin® structure P over X. Applying the above Theorem
2to X = X° UW?Y we obtain a diffeomorphism

Mdl (XO)XTMd2 (WO) — Mo(f))

Here (d;,d2) is one of (0,9(32)) or (¢(X2),0). It follows from the fact
that dy or do is greater than or equal to g(X2) and dy + dz = ¢g(Z2).
Otherwise, the fiber product Mg, x, Mg, is empty for a Spin® structure
P with nonzero Seiberg-Witten invariant.
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COROLLARY 3. Let X1 and X, be symplectic manifolds and Z =
XilisXo. Let Pxo and Pxg be Spin® structures on X{ and X9 such that

cl(detISXg)(Z) =2—-29(¥,) for i = 1,2. Then there is a diffeomorphism
Md1 (X?a ng)XTM,b (Xga PX%) - Md1+d2—g(22)(Z, ]3),

where (d1,dz) = (0,9(32)), (9(Z2),0) or (9(X2), 9(Z2)).
THEOREM 4. For d=0, there is a diffeomorphism

Mo(X7, Pxo)xrMg(z,) (X3, Pxo) — Mo(Z, P),
and we have a relation
SWz(P) = SWxo(Pxa) - p,

where p is the degree of r : My(s,) (X9, ng) — R(X).

Proof. Let {s;} be a sequence approaching to infinity and let (4;, ;)
be a sequence in My (Z;,, 15) with respect to the metric g,,. After pass-
ing to a subsequence, (A4;,1;) converges to ((Ao, o), (Bo, $o)) in com-
pact topology. If f(Ao,v0) = f((A4i,¥ilx,(s)), then (Ao,v0) is a solu-
tion to the SW-equations and is in MO(X?,ng). But if f(Ao, o) <
F((As,%5|x,(s,)), then there are a sequence of t; — oo and € > 0 such

that -
/ Fy, ANFy,

123

> €.

Since the solution (A;, ¥;) decays exponentially to a static solution, we

can assume that
tit1
/ Fa, NFa,
t;

Take a sequence r; < t; with lim, ,..r; = oo and an embedding I; :
(=ri,ri) XY — XD by (t,z) — (t +t;,x). After taking a subsequence
I¥(A;,v;) converges to (A;1,11) on R x Y in compact topology, which
satisfies a gradient flow equation and

Z €.

> €,

1
/ Fz, NFyg,
0

Repeating the same process we obtain finite numbers (A, :),1 =
1,2,...,k, such that lim,_, (Ao, %) = lim;—, _ oo (A1,%1) and lim;_, _
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(Ai_1, 1) = limy_,_ oo( , U ;) inR(Y) foralli =2,... k. Then f(As,
$i)[XT] = f(Ao, %o) + By (A, ) = (2X+30)(X°)

Since (Ag,%0) — (2x + 30)(X0) > 0 and f(A;,1;) > 0 for all 4, we
have k=0 and f(Ao,%0) = (2x + 30)(X?).

Similarly, on X3 we have a limit of subsequence (A;,1;) of solu-
tions restricted to Xg(sz) with respect to the metric gs,, of the form

(BOa ¢0) (Bla ¢1)ﬁ (Blv ¢l) where hmt—»oo(Bm d)O) hmt—»—oo(Bla Q_Sl)a
limy o0 (Bi-1, $i—1) = limg, _ oo(Bi,#;) for all i = 2,...  k and lim;_,

(Bla ¢l) = hmt—>—oo(A0, ¢0)
Therefore we have

F(Bo, o) + By f(Bi, 6i) = F(Ai, :)[Z] — F(Ao, ¥o)[XT]
= (2x + 30)(XY9),

and so I= 0. Then up to sign SW5(P) equals to p - SWxo (Px?). O

THEOREM 5. For the canonical Spin® structure K3 on X, dimMyx,
(K3'|x,) is zero and the Seiberg-Witten invariant SWxo(K3E!|x,) is
nonzero.

Proof. We show that the dimension of moduli space Myyo(K 5" |wo)
is 2g(¥3). For a general Spin® structure L = Kv_Vlo ® F?, by the index
theorem

dim Mo, (L) = )2 WP] — (2x + 30)(W?)).

i
We assume that ¢, (L)(X) = 2 — 29(X;). A finite energy solution

(A,¢) = (A,0,0) € Myo(L) exponentially decays to a static solution
in an appropriate gauge. Since Fj; A Fp = 0 for a static solution B,

c1(L)* W0 = / FyANFy

is finite. Let lim;—oo(A¢,9¥:) = (Ao, a0,0) € R(Y). Then the limit

(Ag,aq) is pull back of a solution (Asx,as) which is represented by

agl(0) = Ung){xi} x S'. Let N(z;) be a neighborhood of z; in X.
We can assume that

JE = e
N(zi)

27
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by a choice of metric in ¥. The holomorphic section « converges expo-
nentially fast to a section which is defined by zero at end of {z;} x D?
and nonzero at end of {y} x D? for y ¢ {z1,--+ ,2,} and so a can be
extended to a holomorphic section over ¥ x §2. Also Ap|p2 can be ex-
tended to a holomorphic connection on a line bundle over S?. Then we
have

v—1
F4, = the number of zeros of a over D*(:= n),

yx D? 27T

and
=n+1
z.x D2 27'('
So we have
e (L)* W]
= 2/ —FA WFA

i=1 Y N(=z) A D2 2m
=22 —2g9(Z1) + 2(2 —=29(%1) — 9(Z2))n + 29(Z2)(n + 1))
=4 —4g(Z1) +4n(2 — 29(%1)) + 49(X2).

Thus we have
dimM wo (L)

= (4= 49(S1) +4n(2 — 29(S0)) + 49(S) — (4 — 49()))
= 29(55) + (2~ 29(Z4),
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where

v—1
n= / ——F4, = {f of zeros of a over D2
yx D2 277'

For a Spin® structure L = K3' = KV"V(I) ® F? with ¢ (F)(Z) = g(Z2),
21 (F)[{y} x D*] = ex(Kx"){y} x D?| — er(Kyp)[{y} x D] =0.
Then n = 0 and dimMyyo(K5 o) = 29(X3). From Theorem 4
dimMx(K%') = 0 and dimMxo(L) = 0, SWx(Kx') is equal to
SWxo - p up to sign.
Therefore SWo is not trivial. O

Using the results of [3] and [17] we can prove the following.

THEOREM 6. There is a Spin® structure L on X° with ¢1(L)(Z) =
2 — 2¢(%1) such that the degree of r is nonzero.

THEOREM 7. Let X be a symplectic manifold with an embedded sub-
manifold ¥, of minimal genus > 1 in its homology class [21] € Ha(X,Z)
and of self-intersection number > 0. Let Z = X{fxX. Then there is
a Spin® structure L on Z with nonzero Seiberg-Witten invariant and
degree 2 — 2g(¥;) on X.

Proof. Let L be a Spin€ structure on Z = Xf{y X obtained by glu-
ing restriction K)_(ll xo of canonical Spin® structure on X to X° as in
Theorem 6. Applying Theorem 4 to Z = X{x X, we have

SWz(L) = £SWxo(Kx*|x0) - p,

where p is the degree of map r : Mxo(L|x0) — R(X). Then the Seiberg-
Witten invariant on Z with respect to a Spin® structure L is nonzero.[]
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