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PROPERTIES OF A kTH ROOT
OF A HYPONORMAL OPERATOR

EuncIiL Ko

ABSTRACT. In this paper, we study some properties of (/H) (de-
fined below). In particular we show that an operator T € (YH)
satisfying the translation invariant property is hyponormal and an
invertible operator T' € (¥/H) and its inverse T~ ' have a common
nontrivial invariant closed set. Also we study some cases which
have nontrivial invariant subspaces for an operator in (vVH).

Let H and K be separable, complex Hilbert spaces and £L(H,K) de-
note the space of all bounded linear operators from H to K. If H = K,
we write £L(H) in place of L(H, K).

An operator T is called hyponormal if T*T > TT*, or equivalently,
if |Thi > ||T*h|| for all h € H. Let (H) denote the class of hyponormal
operators. We say that an operator T € L(H) is a kth root of a hyponor-
mal operator if T* is hyponormal for some positive integer k (> 2). We
denote this class by ({/H). In particular the class (VH)(= (VH)) con-
sists of square roots of hyponormal operators.

In this paper, we study some properties of (\'“/ﬁ ) (defined below). In
particular we show that an operator T' € (¥/H) satisfying the translation
invariant property is hyponormal and an invertible operator T € (v/H)
and its inverse T~! have a common nontrivial invariant closed set. Also
we study some cases which have nontrivial invariant subspaces for an

operator in (vVH).

1. Some properties

We start this section with some examples of kth roots of hyponormal
operators.
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Exampie 1.1. f T € L(H) is any nilpotent operator of order k — 1,
then by Halmos characterization T is unitarily equivalent to the follow-
ing operator matrix

0 Ajg -+ - Ay

0 ... ... A
A= ' 2
0

Since A € (¥/H) and kth roots of hyponormal operators are unitarily
invariant, T € (VH).

The following are the straightway conclusions about shifts.

PROPOSITION 1.2. Let T be a weighted shift with nonzero weights
{an}2,. Then T € (/H) if and only if |an—p| - |on-1] < |an|---
loptk—1] forn =k, k+1,---.

Proof. Let {en}>2, be an orthonormal basis of a Hilbert space H.
Since T*e, = oy - - Opyk—16ntk and T*%en = Gno1- - Gpeklnk, it is
easy to calculate that T* is hyponormal if and only if |og |- - - |an—1] <
lan| < lapip-1| forn =k, k+1,---. O

COROLLARY 1.3. Let T be a weighted shift with nonzero weights
{an}>2,. If T is hyponormal, then T € (¥/H) for every k € N.

Next we give another example of kth roots of hyponormal operators.

ExAMPLE 1.4. Let T, be the weighted shift with nonzero weights

%, ag = %, --+. Then it is an easy calculation from
Proposition 1.2 that T, € (V/H) if and only if 0 < z < \/(—i%);.

We observe that Ty is a (k + 1)th root of a hyponormal operator, but
is not a kth root of a hyponormal operator if 4/ (Z,jgz <z <Y/ (Z:fzf.
In particular, T, is a kth root of a hyponormal operator, but is not a

hyponormal operator if \/g <z< (122_:)22'

Qp = I, a1 =

Next we state some properties of an operator in (3 H).

PROPOSITION 1.5. Let T € (v/H). Then

(a) T € (VH) for all scalar .

(b) If T is invertible, then T~ is a kth root of a hyponormal operator.
(¢) If M € Lat(T), then T|pq is a kth root of a hyponormal operator.
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(d) The set of all kth roots of hyponormal operators is closed in the
norm topology.

Proof. (a) It is obvious.

(b) If T is invertible, then T* is invertible and hyponormal. Hence
T~ = (T~1)* is hyponormal. Thus T~ € (VH).

(c) If M € Lat(T), then (T|pm)* = T*|p. Since T*| 5 is hyponormal,
T\m € (VH).

(d) If T, — T, then T¥ — T*. Since the set of all hyponormal
operators is closed in the norm topology and Tff are hyponormal, T* is
hyponormal. Thus T € (VH). O

PROPOSITION 1.6. (¥/H) is a proper subclass of L(H).

Proof. Since T* is hyponormal, ker T* = ker T%¢. Hence ker T*
= ker T*+1. Let U* be any unilateral backward shift on I2(N). Since
ker(U*)* # ker(U*)5+! for any k € N, U* ¢ (VH). O

Next we characterize a matrix on 2-dimensional complex Hilbert
space which is in (v/H). Since every matrix on a finite dimensional
complex Hilbert space is unitarily equivalent to a upper triangular ma-
trix and a kth root of a hyponormal operator is unitarily invariant, it
suffices to characterize a upper triangular matrix 7. From the direct
calculation, we get the following characterization.

PROPOSITION 1.7. For k > 2 we have

T = (g lc))E({“/ﬁ)<:>b(ak"1+ak_2c+---+ck‘l)=0'

We remark here that Proposition 1.7 offers the convenient criterion to
find some examples of operators in (VH). Also we observe that (v H)
is not necessarily normal on a finite dimensional space.

EXAMPLE 1.8. If k£ = 3 in Proposition 1.7, then T € (v/H) if and
only if b(a® + ac +c?) =0. Take a =2, b= 1, and ¢ = —1 + v/3i. Then

T=<§ _1_&\/?—)1.>E(\3/E),

but 7" is not a normal operator.

It is known that hyponormal operators have translation-invariant
property. On the other hand, the class of square roots of hyponormal
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operators may not have the translation-invariant property. For example,
if T'e L(H & H) is defined as

0 A
it

then T is a square root of a hyponormal operator. But
g2 Y —4|)\|2AA* 0
[(T )‘) a(T ’\) ] - ( 0 4|/\|2A*A 3
which is not positive. Hence (T' — \)? is not necessarily hyponormal.

In light of the above statement, it is natural to ask the following ques-
tion: What is the class of operators in (¥/H) satisfying the translation
invariant property?

THEOREM 1.9. If T — X is in (V/H) for every A € C, then T is
hyponormal.

Proof. If (T — \)¥ is hyponormal for every A € C, then
[(T* = N*, (T — NF] > 0.
Therefore, we have
0 < [(T" =N (T - N
= (T =T - NF = (T - NI - V)

) [Z (7 )@ren] [Z (&)
o ‘[S; < ’2 ) T’“‘S(—A)’“] {Z: ( ’: ) (T*)’“"(—X)T].

Set A = pet? for every 0 < 6 < 27 and p > 0. Then we get

By i(_w(1:><1;)pr+sei<s_r)e(T*)k_er_s

r=0 s=0

k k
Z(_l)r+s< f ) ( 1;7 )pr+sei(s—r)0Tk—3(T*)k—r‘
=0 s=0

0 s

Since terms in (1) are eliminated when r =s =k, r =k, and s = k, we
do eliminate these terms and then divide by p?*=2. Then we obtain

k k . |
OS(k—l > ( b1 )[TT—TT]+;(theotherterms).
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Letting p — oo, we get T*T > TT™. O

We remark that the converse of Theorem 1.9 may not hold. For
example, let U € L(I2(N)) denote the unlateral shift. Then it is known
that T = 2U +U* is hyponormal, but T2 is no longer hyponormal. Hence
the class of operators in (\k/ﬁ ) with the translation-invariant property
forms a proper subclass of hyponormal operators.

Recall that if T € L(H) and = € H, then {T"z}52, is called the orbit

of z under T, and is denoted by orb(T,z). If orb(T,z) is dense in H,
then z is called a hypercyclic vector for T

THEOREM 1.10. If T € (¥/H) is invertible, then T and T~! have a
common nontrivial invariant closed set.

Proof. Since T* is hyponormal, it follows from [6] that T* has no
hypercyclic vector. Then T has no hypercyclic vector from [1]. [6, The-
orem 2.15] implies that 7' and 7! have a common nontrivial invariant
closed set. O

CoROLLARY 1.11. If T € (¥/H) is invertible, then T~! has no hy-
percyclic vector.

Proof. Since T~ is hyponormal by Proposition 1.5, it follows from
the proof of Theorem 1.10 that 7-! has no hypercyclic vector. O

LeMMA 1.12. ([6, Theorem 2.1]) Let L(H). Then T has a hypercyclic
vector if and only if for any non-empty open subsets V and W of H there
exists a non-negative integer n with T~ (V)NW # ¢.

THEOREM 1.13. Let T' = U|T| (polar decomposition) be invertible
in (¥/H). Then the Aluthge transform of T, T = |T|*/2U|T|'/? has no
hypercyclic vector.

Proof. Assume T = |T'|*/2U|T|"/? has a hypercyclic vector. Since T
has no hypercyclic vector from the proof of Theorem 1.10, by Lemma
1.12 there exist non-empty open subsets V and W of H such that
T~™(V) N W = ¢ for all non-negative integer n. Hence for all non-
negative integer n, T (V) C W*° where W¢ = H\W. Thus V C
T™(W¢) for all non-negative integer n. Since T" = U|T|Y/2T1T|/2,
we get that for all non-negative integer n

vV U’T|1/2Tn——1 'T|1/2(Wc),

ie.,

|T1V2(V) € T VAW
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Hence we have
T T2 (V) N (I T2 (W) = ¢

for all non-negative integer n. Since [|T|Y/2(W¢)|¢ = |T|Y/2(W), we
obtain

TITM2WIN(ITI2(W)] = ¢
for all non-negative integer n. Since |T|*/2(V) and |T|Y2(W) are open,
we have the contradiction, because T has a hypercyclic vector. O

2. Subscalarity

A bounded linear operator S on H is called scalar of order m if it
possesses a spectral distribution of order m, i.e., if there is a continuous
unital morphism,

o :C*(C) — L(H)
such that ®(z) = S, where z stands for the identity function on C and
C§*(C) for the space of compactly supported functions on C, contin-
uously differentiable of order m, 0 < m < oco. An operator is called
subscalar if it is similar to the restriction of a scalar operator to an
invariant subspace.

Next we study some cases with subscalarity.

THEOREM 2.1. Let T € L(H) be a square root of a hyponormal
operator. If one of the following conditions holds;

(1) T is compact,

(2) T?" is normal for some integer n,

(3) T is a square root of a hyponormal operator, and

(4) m(o(T)) = 0 where m is the planar Lebesgue measure, then T is
subscalar.

Proof. (1) If T is compact, then T? is compact and hyponormal. By
[3, Corollary 4.9], T2 is normal. (2) If (T?)™ is normal for some integer
n, T? is normal from [14]. (3) If T* is a square root of a hyponormal
operator, T2 is normal. Also (4) if m(c(T)) = O where m is the planar
Lebesgue measure, then T2 is normal by [12].

Since T? is normal in any cases, by [13, Theorem 1]

B C
T—4s ( B C ) ,

where A and B are normal and C is a positive one-to-one operator
commuting with B. By [8, Theorem 4.5], T' is subscalar. O
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COROLLARY 2.2. Let T be a square root of a hyponormal operator.
Suppose that T is compact, or T?" is normal for some integer n, or T*
is a square root of a hyponormal operator. If o(T) has the property
that there exists some non-empty open set U such that o(T)NU is
dominating for U, then T has a nontrivial invariant subspace.

_ Proof. The proof follows from Theorem 2.1 and [4]. O

It is known that a hyponormal and compact operator is normal. But
we observe from Theorem 2.1 that a square root of a hyponormal opera-
tor, which is compact, is not necessary a normal operator. For example,

= (00

is a square root of a hyponormal operator and is a compact operator,
but is not necessary a normal operator.

THEOREM 2.3. Let T be in (¥/H). If T is quasinilpotent, then T is
subscalar.

Proof. Since o(T) = {0}, by the spectral mapping theorem o(T*) =
o(T)* = {0}. Since T* is quasinilpotent and hyponormal, T* = 0. Since
T is nilpotent, T' is subscalar by [§]. O

Recall that an X € L(H,K) is called a quasiaffinity if it has trivial
kernel and dense range. An operator A € L(H) is said to be a quasiaffine

transform of an operator T € L(K) there exists a quasiaffinity X €
L(H,K) such that XA =TX.

COROLLARY 2.4. Let T be a square root of a hyponormal operator.
Suppose that T is compact, quasinilpotent, or T*" js normal for some
integer n. If A is any quasiaffine transform of T, then o(T) C o(A).

Proof. It is clear from Theorem 2.1, Theorem 2.3, and [9]. O
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