PROPERTIES OF A \textit{kth} ROOT
OF A HYPERSONAL OPERATOR

EUNGIL KO

Abstract. In this paper, we study some properties of \((\sqrt[k]{H})\) (defined below). In particular we show that an operator \(T \in (\sqrt[k]{H})\)
satisfying the translation invariant property is hyponormal and an
invertible operator \(T \in (\sqrt[k]{H})\) and its inverse \(T^{-1}\) have a common
nontrivial invariant closed set. Also we study some cases which
have nontrivial invariant subspaces for an operator in \((\sqrt[k]{H})\).

Let \(\mathcal{H}\) and \(\mathcal{K}\) be separable, complex Hilbert spaces and \(L(\mathcal{H}, \mathcal{K})\) denote
the space of all bounded linear operators from \(\mathcal{H}\) to \(\mathcal{K}\). If \(\mathcal{H} = \mathcal{K}\),
we write \(L(\mathcal{H})\) in place of \(L(\mathcal{H}, \mathcal{K})\).

An operator \(T\) is called hyponormal if \(T^*T \geq TT^*\), or equivalently,
if \(\|T^*h\| \geq \|T^*h\|\) for all \(h \in \mathcal{H}\). Let \((\mathcal{H})\) denote the class of hyponormal
operators. We say that an operator \(T \in L(\mathcal{H})\) is a \textit{kth} root of a hyponormal
operator if \(T^k\) is hyponormal for some positive integer \(k \geq 2\). We
denote this class by \((\sqrt[k]{H})\). In particular the class \((\sqrt[2]{H})\) consists of square roots of hyponormal operators.

In this paper, we study some properties of \((\sqrt[k]{H})\) (defined below). In particular we show that an operator \(T \in (\sqrt[k]{H})\) satisfying the translation
invariant property is hyponormal and an invertible operator \(T \in (\sqrt[k]{H})\)
and its inverse \(T^{-1}\) have a common nontrivial invariant closed set. Also
we study some cases which have nontrivial invariant subspaces for an
operator in \((\sqrt[k]{H})\).

1. Some properties

We start this section with some examples of \textit{kth} roots of hyponormal
operators.

Received April 1, 2003.
2000 Mathematics Subject Classification: 47B20, 47B38.
Key words and phrases: hyponormal operators, hypercyclicity, subsca
This work was supported by the 2002 Intramural Research Grant of Ewha Womans
University.
EXAMPLE 1.1. If $T \in \mathcal{L}(\mathcal{H})$ is any nilpotent operator of order $k-1$, then by Halmos characterization T is unitarily equivalent to the following operator matrix

$$A = \begin{pmatrix} 0 & A_{12} & \cdots & A_{1k} \\ 0 & \cdots & \cdots & A_{2k} \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & 0 \end{pmatrix}.$$

Since $A \in (\sqrt[k]{\mathcal{H}})$ and kth roots of hyponormal operators are unitarily invariant, $T \in (\sqrt[k]{\mathcal{H}})$.

The following are the straightway conclusions about shifts.

Proposition 1.2. Let T be a weighted shift with nonzero weights $\{\alpha_n\}_{n=0}^{\infty}$. Then $T \in (\sqrt[k]{\mathcal{H}})$ if and only if $|\alpha_{n-k}| \cdots |\alpha_{n-1}| \leq |\alpha_n| \cdots |\alpha_{n+k-1}|$ for $n = k, k+1, \cdots$.

Proof. Let $\{e_n\}_{n=0}^{\infty}$ be an orthonormal basis of a Hilbert space \mathcal{H}. Since $T^k e_n = \alpha_n \cdots \alpha_{n+k-1} e_{n+k}$ and $T^* e_n = \bar{\alpha}_n^{-1} \cdots \bar{\alpha}_{n-k} e_{n-k}$, it is easy to calculate that T^k is hyponormal if and only if $|\alpha_{n-k}| \cdots |\alpha_{n-1}| \leq |\alpha_n| \cdots |\alpha_{n+k-1}|$ for $n = k, k+1, \cdots$.

Corollary 1.3. Let T be a weighted shift with nonzero weights $\{\alpha_n\}_{n=0}^{\infty}$. If T is hyponormal, then $T \in (\sqrt[k]{\mathcal{H}})$ for every $k \in \mathbb{N}$.

Next we give another example of kth roots of hyponormal operators.

Example 1.4. Let T_x be the weighted shift with nonzero weights $\alpha_0 = x, \alpha_1 = \sqrt{\frac{2}{3}}, \alpha_2 = \sqrt{\frac{3}{4}}, \cdots$. Then it is an easy calculation from Proposition 1.2 that $T_x \in (\sqrt[k]{\mathcal{H}})$ if and only if $0 < x \leq \sqrt{\frac{(k+1)^2}{4k+2}}$.

We observe that T_x is a $(k+1)$th root of a hyponormal operator, but is not a kth root of a hyponormal operator if $\sqrt{\frac{(k+1)^2}{4k+2}} < x \leq \sqrt{\frac{(k+2)^2}{4k+6}}$. In particular, T_x is a kth root of a hyponormal operator, but is not a hyponormal operator if $\sqrt{\frac{2}{3}} < x \leq \sqrt{\frac{(k+1)^2}{4k+2}}$.

Next we state some properties of an operator in $(\sqrt[k]{\mathcal{H}})$.

Proposition 1.5. Let $T \in (\sqrt[k]{\mathcal{H}})$. Then

(a) $\alpha T \in (\sqrt[k]{\mathcal{H}})$ for all scalar α.

(b) If T is invertible, then T^{-1} is a kth root of a hyponormal operator.

(c) If $M \in \text{Lat}(T)$, then $T|_M$ is a kth root of a hyponormal operator.
(d) The set of all kth roots of hyponormal operators is closed in the
norm topology.

Proof. (a) It is obvious.
(b) If T is invertible, then T^k is invertible and hyponormal. Hence
$T^{-k} = (T^{-1})^k$ is hyponormal. Thus $T^{-1} \in (\sqrt[k]{H})$.
(c) If $\mathcal{M} \in \text{Lat}(T)$, then $(T|_{\mathcal{M}})^k = T^k|_{\mathcal{M}}$. Since $T^k|_{\mathcal{M}}$ is hyponormal,
$T|_{\mathcal{M}} \in (\sqrt[k]{H})$.
(d) If $T_n \to T$, then $T_n^k \to T^k$. Since the set of all hyponormal
operators is closed in the norm topology and T_n^k are hyponormal, T^k
is hyponormal. Thus $T \in (\sqrt[k]{H})$. □

PROPOSITION 1.6. $(\sqrt[k]{H})$ is a proper subclass of $\mathcal{L}(\mathcal{H})$.

Proof. Since T^k is hyponormal, ker $T^k = \ker T^{2k}$. Hence ker T^k
= ker T^{k+1}. Let U^* be any unilateral backward shift on $l^2(\mathbb{N})$. Since
ker(U^*^k) \neq ker(U^*^{k+1}) for any $k \in \mathbb{N}, U^* \notin (\sqrt[k]{H})$. □

Next we characterize a matrix on 2-dimensional complex Hilbert
space which is in $(\sqrt[k]{H})$. Since every matrix on a finite dimensional
complex Hilbert space is unitarily equivalent to a upper triangular ma-
trix and a kth root of a hyponormal operator is unitarily invariant, it
suffices to characterize a upper triangular matrix T. From the direct
calculation, we get the following characterization.

PROPOSITION 1.7. For $k \geq 2$ we have
$$T = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \in (\sqrt[k]{H}) \iff b(a^{k-1} + a^{k-2}c + \cdots + c^{k-1}) = 0.$$

We remark here that Proposition 1.7 offers the convenient criterion to
find some examples of operators in $(\sqrt[k]{H})$. Also we observe that $(\sqrt[k]{H})$
is not necessarily normal on a finite dimensional space.

EXAMPLE 1.8. If $k = 3$ in Proposition 1.7, then $T \in (\sqrt[3]{H})$ if and
only if $b(a^2 + ac + c^2) = 0$. Take $a = 2, b = 1$, and $c = -1 + \sqrt{3}i$. Then
$$T = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ -1 + \sqrt{3}i \end{pmatrix} \in (\sqrt[3]{H}),$$
but T is not a normal operator.

It is known that hyponormal operators have translation-invariant
property. On the other hand, the class of square roots of hyponormal
operators may not have the translation-invariant property. For example, if \(T \in \mathcal{L}(\mathcal{H} \otimes \mathcal{H}) \) is defined as
\[
T = \begin{pmatrix} 0 & A \\ 0 & 0 \end{pmatrix},
\]
then \(T \) is a square root of a hyponormal operator. But
\[
[(T - \lambda)^{2}, (T - \lambda)^{2}] = \begin{pmatrix} -4|\lambda|^{2}AA^{*} & 0 \\ 0 & 4|\lambda|^{2}A^{*}A \end{pmatrix},
\]
which is not positive. Hence \((T - \lambda)^{2}\) is not necessarily hyponormal.

In light of the above statement, it is natural to ask the following question: What is the class of operators in \((\sqrt[\phi]{\mathcal{H}})\) satisfying the translation invariant property?

Theorem 1.9. If \(T - \lambda \) is in \((\sqrt[\phi]{\mathcal{H}})\) for every \(\lambda \in \mathbb{C} \), then \(T \) is hyponormal.

Proof. If \((T - \lambda)^{k}\) is hyponormal for every \(\lambda \in \mathbb{C} \), then
\[
[(T^{*} - \bar{\lambda})^{k}, (T - \lambda)^{k}] \geq 0.
\]

Therefore, we have
\[
0 \leq [(T^{*} - \bar{\lambda})^{k}, (T - \lambda)^{k}]
= (T^{*} - \bar{\lambda})^{k}(T - \lambda)^{k} - (T - \lambda)^{k}(T^{*} - \lambda)^{k}
= \left[\sum_{r=0}^{k} \binom{k}{r} (T^{*})^{k-r}(-\bar{\lambda})^{r} \right] \left[\sum_{s=0}^{k} \binom{k}{s} T^{k-s}(-\lambda)^{s} \right]
- \left[\sum_{r=0}^{k} \binom{k}{r} (T^{*})^{k-r}(-\bar{\lambda})^{r} \right] \left[\sum_{s=0}^{k} \binom{k}{s} (T^{*})^{k-s}(-\lambda)^{s} \right].
\]

(1)

Set \(\lambda = \rho e^{\theta} \) for every \(0 \leq \theta < 2\pi \) and \(\rho > 0 \). Then we get
\[
(1) = \sum_{r=0}^{k} \sum_{s=0}^{k} (-1)^{r+s} \binom{k}{r} \binom{k}{s} \rho^{r+s} e^{i(s-r)\theta} (T^{*})^{k-r}T^{k-s}
- \sum_{r=0}^{k} \sum_{s=0}^{k} (-1)^{r+s} \binom{k}{r} \binom{k}{s} \rho^{r+s} e^{i(s-r)\theta} (T^{*})^{k-s}(T^{*})^{k-r}.
\]

Since terms in (1) are eliminated when \(r = s = k, r = k, \) and \(s = k \), we do eliminate these terms and then divide by \(\rho^{2k-2} \). Then we obtain
\[
0 \leq \binom{k}{k-1} \binom{k}{k-1} [T^{*}T - TT^{*}] + \frac{1}{\rho} \text{(the other terms)}.
\]
Letting $\rho \to \infty$, we get $T^*T \geq TT^*$.

We remark that the converse of Theorem 1.9 may not hold. For example, let $U \in \mathcal{L}(l^2(\mathbb{N}))$ denote the unilateral shift. Then it is known that $T = 2U + U^*$ is hyponormal, but T^2 is no longer hyponormal. Hence the class of operators in $(\sqrt{\mathcal{H}})$ with the translation-invariant property forms a proper subclass of hyponormal operators.

Recall that if $T \in \mathcal{L}(\mathcal{H})$ and $x \in \mathcal{H}$, then $\{T^n x\}_{n=0}^\infty$ is called the orbit of x under T, and is denoted by $\text{orb}(T, x)$. If $\text{orb}(T, x)$ is dense in \mathcal{H}, then x is called a hypercyclic vector for T.

Theorem 1.10. If $T \in (\sqrt{\mathcal{H}})$ is invertible, then T and T^{-1} have a common nontrivial invariant closed set.

Proof. Since T^k is hyponormal, it follows from [6] that T^k has no hypercyclic vector. Then T has no hypercyclic vector from [1]. [6, Theorem 2.15] implies that T and T^{-1} have a common nontrivial invariant closed set. \(\square\)

Corollary 1.11. If $T \in (\sqrt{\mathcal{H}})$ is invertible, then T^{-1} has no hypercyclic vector.

Proof. Since T^{-1} is hyponormal by Proposition 1.5, it follows from the proof of Theorem 1.10 that T^{-1} has no hypercyclic vector. \(\square\)

Lemma 1.12. ([6, Theorem 2.1]) Let $\mathcal{L}(\mathcal{H})$. Then T has a hypercyclic vector if and only if for any non-empty open subsets V and W of \mathcal{H} there exists a non-negative integer n with $T^{-n}(V) \cap W \neq \emptyset$.

Theorem 1.13. Let $T = U|T|$ (polar decomposition) be invertible in $(\sqrt{\mathcal{H}})$. Then the Aluthge transform of T, $\tilde{T} = |T|^{1/2}U|T|^{1/2}$ has no hypercyclic vector.

Proof. Assume $\tilde{T} = |T|^{1/2}U|T|^{1/2}$ has a hypercyclic vector. Since T has no hypercyclic vector from the proof of Theorem 1.10, by Lemma 1.12 there exist non-empty open subsets V and W of \mathcal{H} such that $T^{-n}(V) \cap W = \emptyset$ for all non-negative integer n. Hence for all non-negative integer n, $T^{-n}(V) \subset W_c$ where $W_c = \mathcal{H} \setminus W$. Thus $V \subset T^n(W_c)$ for all non-negative integer n. Since $T^n = U|T|^{1/2} \tilde{T}^{n-1}|T|^{1/2}$, we get that for all non-negative integer n

$$V \subset U|T|^{1/2} \tilde{T}^{n-1}|T|^{1/2}(W_c),$$

i.e.,

$$|T|^{1/2}(V) \subset \tilde{T}^n|T|^{1/2}(W_c).$$
Hence we have
\[\hat{T}^{-n}[[T]^{1/2}(V)] \cap [[T]^{1/2}(W^c)]^c = \phi \]
for all non-negative integer \(n \). Since \([|T|^{1/2}(W^c)]^c = |T|^{1/2}(W)\), we obtain
\[\hat{T}^{-n}[[T]^{1/2}(V)] \cap [[T]^{1/2}(W)] = \phi \]
for all non-negative integer \(n \). Since \([|T|^{1/2}(V)] \) and \([|T|^{1/2}(W)]\) are open, we have the contradiction, because \(\hat{T} \) has a hypercyclic vector. \(\square \)

2. Subscalarity

A bounded linear operator \(S \) on \(\mathcal{H} \) is called scalar of order \(m \) if it possesses a spectral distribution of order \(m \), i.e., if there is a continuous unital morphism,
\[\Phi : C_0^m(\mathbb{C}) \longrightarrow \mathcal{L}(\mathcal{H}) \]
such that \(\Phi(z) = S \), where \(z \) stands for the identity function on \(\mathbb{C} \) and \(C_0^m(\mathbb{C}) \) for the space of compactly supported functions on \(\mathbb{C} \), continuously differentiable of order \(m \), \(0 \leq m \leq \infty \). An operator is called subscalar if it is similar to the restriction of a scalar operator to an invariant subspace.

Next we study some cases with subscalarity.

Theorem 2.1. Let \(T \in \mathcal{L}(\mathcal{H}) \) be a square root of a hyponormal operator. If one of the following conditions holds:

1. \(T \) is compact,
2. \(T^{2n} \) is normal for some integer \(n \),
3. \(T^* \) is a square root of a hyponormal operator, and
4. \(m(\sigma(T)) = 0 \) where \(m \) is the planar Lebesgue measure, then \(T \) is subscalar.

Proof. (1) If \(T \) is compact, then \(T^2 \) is compact and hyponormal. By [3, Corollary 4.9], \(T^2 \) is normal. (2) If \((T^2)^n \) is normal for some integer \(n \), \(T^2 \) is normal from [14]. (3) If \(T^* \) is a square root of a hyponormal operator, \(T^2 \) is normal. Also (4) if \(m(\sigma(T)) = 0 \) where \(m \) is the planar Lebesgue measure, then \(T^2 \) is normal by [12].

Since \(T^2 \) is normal in any cases, by [13, Theorem 1]
\[T = A \oplus \begin{pmatrix} B & C \\ 0 & -B \end{pmatrix}, \]
where \(A \) and \(B \) are normal and \(C \) is a positive one-to-one operator commuting with \(B \). By [8, Theorem 4.5], \(T \) is subscalar. \(\square \)
Corollary 2.2. Let \(T \) be a square root of a hyponormal operator. Suppose that \(T \) is compact, or \(T^{2n} \) is normal for some integer \(n \), or \(T^* \) is a square root of a hyponormal operator. If \(\sigma(T) \) has the property that there exists some non-empty open set \(U \) such that \(\sigma(T) \cap U \) is dominating for \(U \), then \(T \) has a nontrivial invariant subspace.

Proof. The proof follows from Theorem 2.1 and [4]. \(\square \)

It is known that a hyponormal and compact operator is normal. But we observe from Theorem 2.1 that a square root of a hyponormal operator, which is compact, is not necessary a normal operator. For example,

\[
T = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}
\]

is a square root of a hyponormal operator and is a compact operator, but is not necessary a normal operator.

Theorem 2.3. Let \(T \) be in \(\sqrt{\mathcal{H}} \). If \(T \) is quasinilpotent, then \(T \) is subscalar.

Proof. Since \(\sigma(T) = \{0\} \), by the spectral mapping theorem \(\sigma(T^k) = \sigma(T)^k = \{0\} \). Since \(T^k \) is quasinilpotent and hyponormal, \(T^k = 0 \). Since \(T \) is nilpotent, \(T \) is subscalar by [8]. \(\square \)

Recall that an \(X \in \mathcal{L}(\mathcal{H}, \mathcal{K}) \) is called a quasiaffinity if it has trivial kernel and dense range. An operator \(A \in \mathcal{L}(\mathcal{H}) \) is said to be a quasiaffine transform of an operator \(T \in \mathcal{L}(\mathcal{K}) \) there exists a quasiaffinity \(X \in \mathcal{L}(\mathcal{H}, \mathcal{K}) \) such that \(XA = TX \).

Corollary 2.4. Let \(T \) be a square root of a hyponormal operator. Suppose that \(T \) is compact, quasinilpotent, or \(T^{2n} \) is normal for some integer \(n \). If \(A \) is any quasiaffine transform of \(T \), then \(\sigma(T) \subset \sigma(A) \).

Proof. It is clear from Theorem 2.1, Theorem 2.3, and [9]. \(\square \)

References

DEPARTMENT OF MATHEMATICS, EWHA WOMEN'S UNIVERSITY, SEOUL 120-750, KOREA

E-mail: eiko@ewha.ac.kr