PROPERTIES OF A kTH ROOT OF A HYPONORMAL OPERATOR

EUNGIL KO

ABSTRACT. In this paper, we study some properties of $(\sqrt[k]{H})$ (defined below). In particular we show that an operator $T \in (\sqrt[k]{H})$ satisfying the translation invariant property is hyponormal and an invertible operator $T \in (\sqrt[k]{H})$ and its inverse T^{-1} have a common nontrivial invariant closed set. Also we study some cases which have nontrivial invariant subspaces for an operator in (\sqrt{H}) .

Let \mathcal{H} and \mathcal{K} be separable, complex Hilbert spaces and $\mathcal{L}(\mathcal{H}, \mathcal{K})$ denote the space of all bounded linear operators from \mathcal{H} to \mathcal{K} . If $\mathcal{H} = \mathcal{K}$, we write $\mathcal{L}(\mathcal{H})$ in place of $\mathcal{L}(\mathcal{H}, \mathcal{K})$.

An operator T is called hyponormal if $T^*T \geq TT^*$, or equivalently, if $||Th|| \geq ||T^*h||$ for all $h \in \mathcal{H}$. Let (H) denote the class of hyponormal operators. We say that an operator $T \in \mathcal{L}(\mathcal{H})$ is a kth root of a hyponormal operator if T^k is hyponormal for some positive integer $k \geq 2$. We denote this class by $(\sqrt[k]{H})$. In particular the class $(\sqrt{H})(=(\sqrt[2]{H}))$ consists of square roots of hyponormal operators.

In this paper, we study some properties of $(\sqrt[k]{H})$ (defined below). In particular we show that an operator $T \in (\sqrt[k]{H})$ satisfying the translation invariant property is hyponormal and an invertible operator $T \in (\sqrt[k]{H})$ and its inverse T^{-1} have a common nontrivial invariant closed set. Also we study some cases which have nontrivial invariant subspaces for an operator in (\sqrt{H}) .

1. Some properties

We start this section with some examples of kth roots of hyponormal operators.

Received April 1, 2003.

²⁰⁰⁰ Mathematics Subject Classification: 47B20, 47B38.

Key words and phrases: hyponormal operators, hypercyclicity, subscalarity.

This work was supported by the 2002 Intramural Research Grant of Ewha Womans University.

EXAMPLE 1.1. If $T \in \mathcal{L}(\mathcal{H})$ is any nilpotent operator of order k-1, then by Halmos characterization T is unitarily equivalent to the following operator matrix

$$A = \left(\begin{array}{cccc} 0 & A_{12} & \cdots & \cdots & A_{1k} \\ & 0 & \cdots & \cdots & A_{2k} \\ & & \ddots & & \vdots \\ & & & 0 \end{array}\right).$$

Since $A \in (\sqrt[k]{H})$ and kth roots of hyponormal operators are unitarily invariant, $T \in (\sqrt[k]{H})$.

The following are the straightway conclusions about shifts.

PROPOSITION 1.2. Let T be a weighted shift with nonzero weights $\{\alpha_n\}_{n=0}^{\infty}$. Then $T \in (\sqrt[k]{H})$ if and only if $|\alpha_{n-k}| \cdots |\alpha_{n-1}| \leq |\alpha_n| \cdots |\alpha_{n+k-1}|$ for $n = k, k+1, \cdots$.

Proof. Let $\{e_n\}_{n=0}^{\infty}$ be an orthonormal basis of a Hilbert space \mathcal{H} . Since $T^k e_n = \alpha_n \cdots \alpha_{n+k-1} e_{n+k}$ and $T^{*k} e_n = \bar{\alpha}_{n-1} \cdots \bar{\alpha}_{n-k} e_{n-k}$, it is easy to calculate that T^k is hyponormal if and only if $|\alpha_{n-k}| \cdots |\alpha_{n-1}| \leq |\alpha_n| \cdots |\alpha_{n+k-1}|$ for $n = k, k+1, \cdots$.

COROLLARY 1.3. Let T be a weighted shift with nonzero weights $\{\alpha_n\}_{n=0}^{\infty}$. If T is hyponormal, then $T \in (\sqrt[k]{H})$ for every $k \in \mathbb{N}$.

Next we give another example of kth roots of hyponormal operators.

EXAMPLE 1.4. Let T_x be the weighted shift with nonzero weights $\alpha_0 = x$, $\alpha_1 = \sqrt{\frac{2}{3}}$, $\alpha_2 = \sqrt{\frac{3}{4}}, \cdots$. Then it is an easy calculation from Proposition 1.2 that $T_x \in (\sqrt[k]{H})$ if and only if $0 < x \le \sqrt{\frac{(k+1)^2}{4k+2}}$.

We observe that T_x is a (k+1)th root of a hyponormal operator, but is not a kth root of a hyponormal operator if $\sqrt{\frac{(k+1)^2}{4k+2}} < x \le \sqrt{\frac{(k+2)^2}{4k+6}}$. In particular, T_x is a kth root of a hyponormal operator, but is not a hyponormal operator if $\sqrt{\frac{2}{3}} < x \le \sqrt{\frac{(k+1)^2}{4k+2}}$.

Next we state some properties of an operator in $(\sqrt[k]{H})$.

PROPOSITION 1.5. Let $T \in (\sqrt[k]{H})$. Then

- (a) $\alpha T \in (\sqrt[k]{H})$ for all scalar α .
- (b) If T is invertible, then T^{-1} is a kth root of a hyponormal operator.
- (c) If $\mathcal{M} \in Lat(T)$, then $T|_{\mathcal{M}}$ is a kth root of a hyponormal operator.

(d) The set of all kth roots of hyponormal operators is closed in the norm topology.

Proof. (a) It is obvious.

- (b) If T is invertible, then T^k is invertible and hyponormal. Hence $T^{-k}=(T^{-1})^k$ is hyponormal. Thus $T^{-1}\in (\sqrt[k]{H})$.
- (c) If $\mathcal{M} \in Lat(T)$, then $(T|_{\mathcal{M}})^k = T^k|_{\mathcal{M}}$. Since $T^k|_{\mathcal{M}}$ is hyponormal, $T|_{\mathcal{M}} \in (\sqrt[k]{H})$.
- (d) If $T_n \to T$, then $T_n^k \to T^k$. Since the set of all hyponormal operators is closed in the norm topology and T_n^k are hyponormal, T^k is hyponormal. Thus $T \in (\sqrt[k]{H})$.

PROPOSITION 1.6. $(\sqrt[k]{H})$ is a proper subclass of $\mathcal{L}(\mathcal{H})$.

Proof. Since T^k is hyponormal, ker $T^k = \ker T^{2k}$. Hence $\ker T^k = \ker T^{k+1}$. Let U^* be any unilateral backward shift on $l^2(\mathbf{N})$. Since $\ker(U^*)^k \neq \ker(U^*)^{k+1}$ for any $k \in \mathbf{N}$, $U^* \notin (\sqrt[k]{H})$.

Next we characterize a matrix on 2-dimensional complex Hilbert space which is in $(\sqrt[k]{H})$. Since every matrix on a finite dimensional complex Hilbert space is unitarily equivalent to a upper triangular matrix and a kth root of a hyponormal operator is unitarily invariant, it suffices to characterize a upper triangular matrix T. From the direct calculation, we get the following characterization.

Proposition 1.7. For $k \geq 2$ we have

$$T = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \in (\sqrt[k]{H}) \Longleftrightarrow b(a^{k-1} + a^{k-2}c + \dots + c^{k-1}) = 0.$$

We remark here that Proposition 1.7 offers the convenient criterion to find some examples of operators in $(\sqrt[k]{H})$. Also we observe that $(\sqrt[k]{H})$ is not necessarily normal on a finite dimensional space.

EXAMPLE 1.8. If k=3 in Proposition 1.7, then $T \in (\sqrt[3]{H})$ if and only if $b(a^2+ac+c^2)=0$. Take a=2, b=1, and $c=-1+\sqrt{3}i$. Then

$$T = \begin{pmatrix} 2 & 1 \\ 0 & -1 + \sqrt{3}i \end{pmatrix} \in (\sqrt[3]{H}),$$

but T is not a normal operator.

It is known that hyponormal operators have translation-invariant property. On the other hand, the class of square roots of hyponormal 688 Eungil Ko

operators may not have the translation-invariant property. For example, if $T \in \mathcal{L}(\mathcal{H} \oplus \mathcal{H})$ is defined as

$$T = \left(\begin{array}{cc} 0 & A \\ 0 & 0 \end{array}\right),$$

then T is a square root of a hyponormal operator. But

$$[(T - \lambda)^{*2}, (T - \lambda)^{2}] = \begin{pmatrix} -4|\lambda|^{2}AA^{*} & 0\\ 0 & 4|\lambda|^{2}A^{*}A \end{pmatrix},$$

which is not positive. Hence $(T - \lambda)^2$ is not necessarily hyponormal.

In light of the above statement, it is natural to ask the following question: What is the class of operators in $(\sqrt[k]{H})$ satisfying the translation invariant property?

THEOREM 1.9. If $T - \lambda$ is in $(\sqrt[k]{H})$ for every $\lambda \in \mathbb{C}$, then T is hyponormal.

Proof. If $(T-\lambda)^k$ is hyponormal for every $\lambda \in \mathbb{C}$, then

$$[(T^* - \bar{\lambda})^k, (T - \lambda)^k] \ge 0.$$

Therefore, we have

$$0 \leq \left[(T^* - \bar{\lambda})^k, (T - \lambda)^k \right]$$

$$= (T^* - \bar{\lambda})^k (T - \lambda)^k - (T - \lambda)^k (T^* - \lambda)^k$$

$$= \left[\sum_{r=0}^k \binom{k}{r} (T^*)^{k-r} (-\bar{\lambda})^r \right] \left[\sum_{s=0}^k \binom{k}{s} T^{k-s} (-\lambda)^k \right]$$

$$- \left[\sum_{s=0}^k \binom{k}{s} T^{k-s} (-\lambda)^k \right] \left[\sum_{r=0}^k \binom{k}{r} (T^*)^{k-r} (-\bar{\lambda})^r \right].$$

$$(1)$$

Set $\lambda = \rho e^{i\theta}$ for every $0 \le \theta < 2\pi$ and $\rho > 0$. Then we get

$$(1) = \sum_{r=0}^{k} \sum_{s=0}^{k} (-1)^{r+s} \binom{k}{r} \binom{k}{s} \rho^{r+s} e^{i(s-r)\theta} (T^*)^{k-r} T^{k-s} - \sum_{r=0}^{k} \sum_{s=0}^{k} (-1)^{r+s} \binom{k}{r} \binom{k}{s} \rho^{r+s} e^{i(s-r)\theta} T^{k-s} (T^*)^{k-r}.$$

Since terms in (1) are eliminated when $r=s=k,\,r=k,$ and s=k, we do eliminate these terms and then divide by ρ^{2k-2} . Then we obtain

$$0 \le {k \choose k-1} {k \choose k-1} [T^*T - TT^*] + \frac{1}{\rho} \text{(the other terms)}.$$

Letting $\rho \to \infty$, we get $T^*T \ge TT^*$.

We remark that the converse of Theorem 1.9 may not hold. For example, let $U \in \mathcal{L}(l^2(\mathbf{N}))$ denote the unlateral shift. Then it is known that $T = 2U + U^*$ is hyponormal, but T^2 is no longer hyponormal. Hence the class of operators in $(\sqrt[k]{H})$ with the translation-invariant property forms a proper subclass of hyponormal operators.

Recall that if $T \in \mathcal{L}(\mathcal{H})$ and $x \in \mathcal{H}$, then $\{T^n x\}_{n=0}^{\infty}$ is called the orbit of x under T, and is denoted by orb(T, x). If orb(T, x) is dense in \mathcal{H} , then x is called a *hypercyclic* vector for T.

THEOREM 1.10. If $T \in (\sqrt[k]{H})$ is invertible, then T and T^{-1} have a common nontrivial invariant closed set.

Proof. Since T^k is hyponormal, it follows from [6] that T^k has no hypercyclic vector. Then T has no hypercyclic vector from [1]. [6, Theorem 2.15] implies that T and T^{-1} have a common nontrivial invariant closed set.

COROLLARY 1.11. If $T \in (\sqrt[k]{H})$ is invertible, then T^{-1} has no hypercyclic vector.

Proof. Since T^{-1} is hyponormal by Proposition 1.5, it follows from the proof of Theorem 1.10 that T^{-1} has no hypercyclic vector.

LEMMA 1.12. ([6, Theorem 2.1]) Let $\mathcal{L}(\mathcal{H})$. Then T has a hypercyclic vector if and only if for any non-empty open subsets V and W of \mathcal{H} there exists a non-negative integer n with $T^{-n}(V) \cap W \neq \phi$.

THEOREM 1.13. Let T=U|T| (polar decomposition) be invertible in $(\sqrt[k]{H})$. Then the Aluthge transform of T, $\tilde{T}=|T|^{1/2}U|T|^{1/2}$ has no hypercyclic vector.

Proof. Assume $\tilde{T}=|T|^{1/2}U|T|^{1/2}$ has a hypercyclic vector. Since T has no hypercyclic vector from the proof of Theorem 1.10, by Lemma 1.12 there exist non-empty open subsets V and W of \mathcal{H} such that $T^{-n}(V)\cap W=\phi$ for all non-negative integer n. Hence for all nonnegative integer n, $T^{-n}(V)\subset W^c$ where $W^c=\mathcal{H}\backslash W$. Thus $V\subset T^n(W^c)$ for all non-negative integer n. Since $T^n=U|T|^{1/2}\tilde{T}^{n-1}|T|^{1/2}$, we get that for all non-negative integer n

$$V \subset U|T|^{1/2}\tilde{T}^{n-1}|T|^{1/2}(W^c),$$

i.e.,

$$|T|^{1/2}(V) \subset \tilde{T}^n |T|^{1/2}(W^c).$$

690 Eungil Ko

Hence we have

$$\tilde{T}^{-n}[|T|^{1/2}(V)]\cap [|T|^{1/2}(W^c)]^c = \phi$$

for all non-negative integer n. Since $[|T|^{1/2}(W^c)]^c = |T|^{1/2}(W)$, we obtain

$$\tilde{T}^{-n}[|T|^{1/2}(V)] \cap [|T|^{1/2}(W)] = \phi$$

for all non-negative integer n. Since $|T|^{1/2}(V)$ and $|T|^{1/2}(W)$ are open, we have the contradiction, because \tilde{T} has a hypercyclic vector.

2. Subscalarity

A bounded linear operator S on \mathcal{H} is called scalar of order m if it possesses a spectral distribution of order m, i.e., if there is a continuous unital morphism,

$$\Phi: C_0^m(\mathbf{C}) \longrightarrow \mathcal{L}(\mathcal{H})$$

such that $\Phi(z) = S$, where z stands for the identity function on \mathbb{C} and $C_0^m(\mathbb{C})$ for the space of compactly supported functions on \mathbb{C} , continuously differentiable of order m, $0 \le m \le \infty$. An operator is called subscalar if it is similar to the restriction of a scalar operator to an invariant subspace.

Next we study some cases with subscalarity.

THEOREM 2.1. Let $T \in \mathcal{L}(\mathcal{H})$ be a square root of a hyponormal operator. If one of the following conditions holds;

- (1) T is compact,
- (2) T^{2n} is normal for some integer n,
- (3) T^* is a square root of a hyponormal operator, and
- (4) $m(\sigma(T)) = 0$ where m is the planar Lebesgue measure, then T is subscalar.

Proof. (1) If T is compact, then T^2 is compact and hyponormal. By [3, Corollary 4.9], T^2 is normal. (2) If $(T^2)^n$ is normal for some integer n, T^2 is normal from [14]. (3) If T^* is a square root of a hyponormal operator, T^2 is normal. Also (4) if $m(\sigma(T)) = 0$ where m is the planar Lebesgue measure, then T^2 is normal by [12].

Since T^2 is normal in any cases, by [13, Theorem 1]

$$T = A \oplus \left(\begin{array}{cc} B & C \\ 0 & -B \end{array} \right),$$

where A and B are normal and C is a positive one-to-one operator commuting with B. By [8, Theorem 4.5], T is subscalar.

COROLLARY 2.2. Let T be a square root of a hyponormal operator. Suppose that T is compact, or T^{2n} is normal for some integer n, or T^* is a square root of a hyponormal operator. If $\sigma(T)$ has the property that there exists some non-empty open set U such that $\sigma(T) \cap U$ is dominating for U, then T has a nontrivial invariant subspace.

Proof. The proof follows from Theorem 2.1 and
$$[4]$$
.

It is known that a hyponormal and compact operator is normal. But we observe from Theorem 2.1 that a square root of a hyponormal operator, which is compact, is not necessary a normal operator. For example,

$$T = \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right)$$

is a square root of a hyponormal operator and is a compact operator, but is not necessary a normal operator.

THEOREM 2.3. Let T be in $(\sqrt[k]{H})$. If T is quasinilpotent, then T is subscalar.

Proof. Since $\sigma(T) = \{0\}$, by the spectral mapping theorem $\sigma(T^k) = \sigma(T)^k = \{0\}$. Since T^k is quasinilpotent and hyponormal, $T^k = 0$. Since T is nilpotent, T is subscalar by [8].

Recall that an $X \in \mathcal{L}(\mathcal{H}, \mathcal{K})$ is called a quasiaffinity if it has trivial kernel and dense range. An operator $A \in \mathcal{L}(\mathcal{H})$ is said to be a quasiaffine transform of an operator $T \in \mathcal{L}(\mathcal{K})$ there exists a quasiaffinity $X \in \mathcal{L}(\mathcal{H}, \mathcal{K})$ such that XA = TX.

COROLLARY 2.4. Let T be a square root of a hyponormal operator. Suppose that T is compact, quasinilpotent, or T^{2n} is normal for some integer n. If A is any quasiaffine transform of T, then $\sigma(T) \subset \sigma(A)$.

Proof. It is clear from Theorem 2.1, Theorem 2.3, and [9].

References

- [1] S. Ansari, Hypercyclic and cyclic vectors, J. Funct. Anal. 128 (1995), 374–383.
- [2] I. Colojoara and C. Foias, *Theory of generalized spectral operators*, Gordon and Breach, New York, 1968.
- [3] J. Conway, Subnormal operators, Pitman, London, 1981.
- [4] J. Eschmeier, Invariant subspaces for subscalar operators, Arch. Math. 52 (1989), 562-570.
- [5] P. R. Halmos, A Hilbert space problem book, Springer-Verlag, New York, 1982.
- [6] C. Kitai, Invariant closed sets for linear operators, Ph.D Thesis, Univ. of Toronto, 1982.

692 Eungil Ko

- [7] M. Kim and E. Ko, Square roots of hyponormal operators, Glasgow Math. J. 41 (1999), 463–470.
- [8] E. Ko, Algebraic and triangular n-hyponormal operators, Proc. Amer. Math. Soc. 123 (1995), 3473–3481.
- [9] _____, On a Clary theorem, Bull. Korean Math. Soc. 33 (1996), no. 1, 29–33.
- [10] M. Martin and M. Putinar, Lectures on hyponormal operators, Birkhuser, Basel, 1989.
- [11] M. Putinar, Hyponormal operators are subscalar, J. Operator Th. 12 (1984), 385–395.
- [12] C. R. Putnam, An inequality for the area of hyponormal spectra, Math. Zeit. 116 (1970), 323-330.
- [13] H. Radjavi and P. Rosenthal, On roots of normal operators, J. Math. Anal. Appl. 34 (1971), 653–664.
- [14] J. G. Stampfli, Hyponormal operators, Pacific J. Math. 12 (1962), 1453-1458.

DEPARTMENT OF MATHEMATICS, EWHA WOMEN'S UNIVERSITY, SEOUL 120-750, KOREA

E-mail: eiko@ewha.ac.kr