ON A FUNCTIONAL CENTRAL LIMIT THEOREM FOR STATIONARY LINEAR PROCESSES GENERATED BY ASSOCIATED PROCESSES

Tae-Sung Kim[†] and Mi-Hwa Ko[‡]

ABSTRACT. A functional central limit theorem is obtained for a stationary linear process of the form $X_t = \sum_{j=0}^{\infty} a_j \epsilon_{t-j}$, where $\{\epsilon_t\}$ is a strictly stationary associated sequence of random variables with $E\epsilon_t = 0$, $E(\epsilon_t^2) < \infty$ and $\{a_j\}$ is a sequence of real numbers with $\sum_{j=0}^{\infty} |a_j| < \infty$. A central limit theorem for a stationary linear process generated by stationary associated processes is also discussed.

1. Introduction and main results

A finite collection of random variables $\{\epsilon_1, \dots, \epsilon_m\}$ is said to be associated if for any two coordinatewise nondecreasing functions f_1, f_2 on \mathbb{R}^m such that $\tilde{f}_j = f_j(\epsilon_1, \dots, \epsilon_m)$ has finite variance for j = 1, 2, $cov(\tilde{f}_1, \tilde{f}_2) \geq 0$. An infinite collection of random variables is said to be associated if every finite subcollection of random variables is associated. This definition was introduced by Esary, Proschan and Walkup ([2]) as an extension of the bivariate notion of positive quadrant dependence of Lehmann ([7]). A large amount of papers has been concerned with limit theorems for associated processes (see, for example, Newman ([8], [9]).

Let $\{X_t, t \in \mathbb{Z}^+\}$ be a stationary linear process defined on a probability space (Ω, \mathcal{F}, P) of the form

$$(1) X_t = \sum_{j=0}^{\infty} a_j \epsilon_{t-j},$$

Received January 16, 2001.

²⁰⁰⁰ Mathematics Subject Classification: 60F05, 60F17.

Key words and phrases: central limit theorem, functional central limit theorem, linear process, associated.

 $^{^\}dagger \text{This}$ paper was partially supported by Korea Research Foundation Grant (KRF-2002-042).

[‡]This paper was partially supported by Statistical Research Center for Complex Systems, Seoul National University.

where $\{a_j\}$ is a sequence of real numbers with $\sum_{j=0}^{\infty} |a_j| < \infty$ and $\{\epsilon_t\}$ is a strictly stationary process such that $E\epsilon_t = 0$ and $0 < E\epsilon_t^2 < \infty$.

The linear processes are special importance in time series analysis and they arise from a wide variety of contexts (see, e.g., Hannan ([6]) Ch.6). Applications to economics, engineering and physical sciences are extremely broad and a vast amount of literature is devoted to the study of the limit theorems for linear processes under various conditions on ϵ_t . For the linear processes, Fakhre-Zakeri and Lee ([4]) and Fakhre-Zakeri and Farshidi ([3]) established a central limit theorem (CLT) under the iid assumption on ϵ_t and Fakhre-Zakeri and Lee ([5]) proved a functional central limit theorem (FCLT) under the strong mixing condition on ϵ_t .

central limit theorem (FCLT) under the strong mixing condition on ϵ_t . Let $S_n = \sum_{t=1}^n X_t$ and $\tau^2 = \sigma^2(\sum_{j=0}^\infty a_j)^2$. Define, for $n \geq 1$, the stochastic process

(2)
$$\xi_n(u) = n^{-\frac{1}{2}} \tau^{-1} S_{[nu]}, \ u \in [0, 1],$$

where [x] is the greatest integer not exceeding x.

In this paper, we establish a CLT (FCLT) for a strictly stationary linear process of the form (1), generated by an associated process $\{\epsilon_t\}$. More precisely, we will prove the following theorems:

THEOREM 1. Let $\{X_t\}$ be a stationary linear process of the form (1), where $\{a_j\}$ is a sequence of constants with $\sum_{j=0}^{\infty} |a_j| < \infty$ and $\{\epsilon_t\}$ is a strictly stationary associated process with $E\epsilon_t = 0$, $0 < E\epsilon_t^2 < \infty$. Assume

(3)
$$0 < \sigma^2 = E\epsilon_1^2 + 2\sum_{t=2}^{\infty} E(\epsilon_1 \epsilon_t) < \infty.$$

Then the linear process $\{X_t\}$ fulfills the CLT.

THEOREM 2. Let $\{X_t\}$ be a stationary linear process of the form (1) defined in Theorem 1. If (3) fulfilled then the process $\{\xi_n\}$ satisfies the FCLT, that is, the process $\{\xi_n\}$ converges weakly to Wiener measure W on the space of all functions on [0,1], which have left hand limits and are continuous from the right.

2. Proofs

The following lemma needs to prove Theorems 1 and 2 and it is proved by modifying the proof of Lemma 3 in Fakhre-Zakeri and Lee ([5]). Doob's maximal inequality played important role in their proof. However, in our case, Newman and Wrights' maximal inequality $E(\max_{1 \le k \le n} 1 \le k \le n)$

 $|\epsilon_1 + \dots + \epsilon_k|^2$) $\leq n\sigma^2$ (see Theorem 2 of Newman and Wright ([10]) will be used.

LEMMA 1. Let $\{\epsilon_t\}$ be a strictly stationary associated process with $E\epsilon_t=0,\ 0< E\epsilon_t^2<\infty$. Let $X_t=\sum_{j=0}^\infty a_j\epsilon_{t-j},\ S_k=\sum_{t=1}^k X_t,$ $\tilde{X}_t=\left(\sum_{j=0}^\infty a_j\right)\epsilon_t$ and $\tilde{S}_k=\sum_{t=1}^k \tilde{X}_t,$ where $\{a_j\}$ is a sequence of real numbers with $\sum_{j=0}^\infty |a_j|<\infty$. If (3) are fulfilled, then

$$(4) \qquad (n^{-\frac{1}{2}}) \max_{1 \le k \le n} |\tilde{S}_k - S_k| \xrightarrow{P} 0.$$

Proof. See Appendix.

Proof of Theorem 1. As in Lemma 1 set

$$\tilde{X}_t = \sum_{i=0}^{\infty} a_i \epsilon_t$$

and

$$\tilde{S}_n = \sum_{t=1}^n \tilde{X}_t = \left(\sum_{j=0}^\infty a_j\right) \sum_{t=1}^n \epsilon_t.$$

Then

$$E(\tilde{X}_t)^2 = E(\sum_{j=0}^{\infty} a_j \epsilon_t)^2$$

$$= (\sum_{j=0}^{\infty} a_j)^2 E \epsilon_t^2$$

$$\leq (\sum_{j=0}^{\infty} |a_j|)^2 E \epsilon_t^2 < \infty,$$
(5)

$$E\tilde{X}_{1}^{2} + 2\sum_{t=2}^{\infty} E(\tilde{X}_{1}\tilde{X}_{t}) = (\sum_{j=0}^{\infty} a_{j})^{2} E\epsilon_{1}^{2} + 2(\sum_{j=0}^{\infty} a_{j})^{2} \sum_{t=2}^{\infty} E(\epsilon_{1}\epsilon_{t})$$

$$= (\sum_{j=0}^{\infty} a_{j})^{2} \sigma^{2} = \tau^{2} < \infty \text{ by (3)}$$

and $\tilde{X}_t's$ are stationary associated process (see [2]). Thus $\{\tilde{X}_t, t \in \mathbb{Z}^+\}$ satisfies the CLT by Theorem 12 of [9], that is,

(7)
$$n^{-\frac{1}{2}}\tilde{S}_n \xrightarrow{\mathcal{D}} N(0, \tau^2).$$

According Lemma 1 we also have

(8)
$$n^{-\frac{1}{2}}|\tilde{S}_n - S_n| \stackrel{P}{\longrightarrow} 0.$$

Hence from (7) and (8) the desired conclusion follows.

Proof of Theorem 2. Note that $\{\tilde{X}_t\}$ is a stationary associated process and that $\{\tilde{X}_t\}$ satisfies conditions of Theorem 3 of Newman and Wright ([10]) according to (5) and (6). This implies that Theorem 2 holds for the sequence $\{\tilde{\xi}_n\}$, where we define $\tilde{\xi}_n$ as in (2), but $\tilde{S}_{[nu]}$ replacing by $S_{[nu]}$. By Lemma 1 $|\tilde{\xi}_n(u) - \xi_n(u)| \xrightarrow{P} 0$ for all $0 \le u \le 1$. Hence, the desired conclusion follows.

Appendix

Proof of Lemma 1. Like in the proof of Lemma 3 of [5] we have

$$\tilde{S}_{k} = \sum_{t=1}^{k} \left(\sum_{j=0}^{k-t} a_{j} \right) \epsilon_{t} + \sum_{t=1}^{k} \left(\sum_{j=k-t+1}^{\infty} a_{j} \right) \epsilon_{t} \\
= \sum_{t=1}^{k} \left(\sum_{j=0}^{t-1} a_{j} \epsilon_{t-j} \right) + \sum_{t=1}^{k} \left(\sum_{j=k-t+1}^{\infty} a_{j} \right) \epsilon_{t}.$$

Thus

$$\tilde{S}_k - S_k = -\sum_{t=1}^k \left(\sum_{j=t}^\infty a_j \epsilon_{t-j} \right) + \sum_{t=1}^k \left(\sum_{j=k-t+1}^\infty a_j \right) \epsilon_t$$
$$= I + II \ (say).$$

It suffices to prove

$$(A.1) n^{-\frac{1}{2}} \max_{1 \le k \le n} |I| \xrightarrow{P} 0,$$

and

$$(A.2) n^{-\frac{1}{2}} \max_{1 \le k \le n} |II| \xrightarrow{P} 0.$$

First we have for

$$n^{-1}E \max_{1 \le k \le n} \left| \sum_{t=1}^{k} \sum_{j=t}^{\infty} a_{j} \epsilon_{t-j} \right|^{2}$$

$$= n^{-1}E \max_{1 \le k \le n} \left| \sum_{j=1}^{\infty} \sum_{t=1}^{j \land k} a_{j} \epsilon_{t-j} \right|^{2}$$

$$\leq n^{-1} \left(\sum_{j=1}^{\infty} |a_{j}| \left\{ E \max_{1 \le k \le n} \left| \sum_{t=1}^{j \land k} \epsilon_{t-j} \right|^{2} \right\}^{\frac{1}{2}} \right)^{2}$$
(by Minkowski's inequality)
$$\leq n^{-1} \left(\sum_{j=1}^{\infty} |a_{j}| \sigma(j \land n)^{\frac{1}{2}} \right)^{2}$$
(by (3) and Theorem 2 of [10])
$$= \left(\sum_{j=1}^{\infty} |a_{j}| \sigma((j \land n)/n)^{\frac{1}{2}} \right)^{2}$$
(by the dominated convergence theorem)
$$= o(1).$$

Hence (A.1) is proved by Markov inequality. To prove (A.2) write

$$II = II_{k1} + II_{k2},$$

where

$$II_{k1} = a_1\epsilon_k + a_2(\epsilon_k + \epsilon_{k-1}) + \dots + a_k(\epsilon_k + \dots + \epsilon_1)$$

and

$$II_{k2} = (a_{k+1} + a_{k+2} + \cdots)(\epsilon_k + \cdots + \epsilon_1),$$

and let $\{p_n\}$ be a sequence of positive integers such that

$$(A.4)$$
 $p_n \to \infty \text{ and } p_n/n \to 0 \text{ as } n \to \infty.$

Then

$$(A.5) \qquad n^{-\frac{1}{2}} \max_{1 \le k \le n} |II_{k2}|$$

$$\leq \left(\sum_{j=0}^{\infty} |a_j|\right) n^{-\frac{1}{2}} \max_{1 \le k \le p_n} |\epsilon_1 + \dots + \epsilon_k|$$

$$+ \left(\sum_{j>p_n} |a_j|\right) n^{-\frac{1}{2}} \max_{1 \le k \le n} |\epsilon_1 + \dots + \epsilon_k|$$

$$= III + IV \text{ (say)}.$$

It follows from (3) and (A.4) that

$$\left(\sum_{j=0}^{\infty} |a_j|\right)^2 n^{-1} E \max_{1 \le k \le p_n} |\epsilon_1 + \dots + \epsilon_k|^2$$

$$\leq \left(\sum_{j=0}^{\infty} |a_j|\right)^2 \sigma^2(p_n/n) = o(1)$$

by Theorem 2 of Newman and Wright ([10]) and thus $III \xrightarrow{P} 0$ by Markov inequality. Similarly, by assumption $\sum_{j=0}^{\infty} |a_j| < \infty$ and Theorem 2 of Newman and Wright ([10])

$$\left(\sum_{j>p_n} |a_j|\right)^2 n^{-1} E \max_{1 \le k \le n} |\epsilon_1 + \dots + \epsilon_k|^2$$

$$\leq \left(\sum_{j>p_n} |a_j|\right)^2 \sigma^2 = o(1)$$

and thus $IV \xrightarrow{P} 0$ by Markov inequality. Hence, $n^{-\frac{1}{2}} \max_{1 \leq k \leq n} |II_{k2}|$ $\xrightarrow{P} 0$. It remains to show that $L_n = n^{-\frac{1}{2}} \max_{1 \leq k \leq n} |II_{k1}| \xrightarrow{P} 0$. For each $m \geq 1$, define $II_{k1,m} = b_1 \epsilon_k + b_2 (\epsilon_k + \epsilon_{k-1}) + \cdots + b_k (\epsilon_k + \cdots + \epsilon_1)$, where $b_k = a_k$ for $k \leq n$ and $b_k = 0$ otherwise and let $L_{n,m} = n^{-\frac{1}{2}} \max_{1 \leq k \leq n} |II_{k1,m}|$. Then

$$(A.6) L_{n,m} \le n^{-\frac{1}{2}}(|a_1| + \dots + |a_m|)(|\epsilon_1| + \dots + |\epsilon_m|) \stackrel{P}{\longrightarrow} 0$$

as $n \to \infty$ for each m, and

$$(A.7) |L_{n,m} - L_n| \le n^{-\frac{1}{2}} \max_{1 \le k \le n} \left| \sum_{i=1}^k (a_i - b_i)(\epsilon_k + \dots + \epsilon_{k-i+1}) \right|.$$

Since

$$\left| \sum_{i=1}^{k} (a_{i} - b_{i})(\epsilon_{k} + \dots + \epsilon_{k-i+1}) \right|$$

$$= \begin{cases} 0, & k \leq m \\ \left| \sum_{i=m+1}^{k} a_{i}(\epsilon_{k} + \dots + \epsilon_{k-i+1}) \right|, & \text{otherwise}, \end{cases}$$
the right-hand side of $(A.7)$

$$\leq n^{-\frac{1}{2}} \max_{m < k \leq n} \left(\sum_{i=m+1}^{k} |a_{i}| \max_{m < i \leq k} |\epsilon_{k} + \dots + \epsilon_{k-i+1}| \right)$$

$$\leq n^{-\frac{1}{2}} \max_{m < k \leq n} \sum_{i=m+1}^{k} |a_{i}| \max_{m < i \leq k} |\epsilon_{k} + \dots + \epsilon_{k-i+1}|$$

$$\leq n^{-\frac{1}{2}} \sum_{i>m} |a_{i}| \max_{m < k \leq n} \max_{m < i \leq k} (|\epsilon_{1} + \dots + \epsilon_{k}| + |\epsilon_{1} + \dots + \epsilon_{k-i}|)$$

$$\leq n^{-\frac{1}{2}} \sum_{i>m} |a_{i}| \left(\max_{m < k \leq n} |\epsilon_{1} + \dots + \epsilon_{k-i}| \right)$$

$$\leq n^{-\frac{1}{2}} \sum_{i>m} |a_{i}| \left(\max_{1 \leq j \leq n} |\epsilon_{1} + \dots + \epsilon_{j}| + \max_{1 \leq j \leq n} |\epsilon_{1} + \dots + \epsilon_{j}| \right)$$

$$= 2n^{-\frac{1}{2}} \sum_{i>m} |a_{i}| \max_{1 \leq j \leq n} |\epsilon_{1} + \dots + \epsilon_{j}|.$$

Therefore, by Theorem 2 of Newman and Wright ([10]) it follows from (A.6), (A.8) and Markov inequality that for any $\delta > 0$,

$$\lim_{m \to \infty} \lim_{n \to \infty} \sup P(|L_{n,m} - L_n| > \delta)$$

$$\leq \lim_{m \to \infty} 2^2 \delta^2 \left(\sum_{j>m} |a_j| \right)^2 \lim_n \sup_{n \to \infty} n^{-1} E \max_{1 \leq j \leq n} |\epsilon_1 + \dots + \epsilon_j|^2$$

$$(A.9) \leq \sigma \lim_{m \to \infty} \delta^2 \cdot 2^2 \left(\sum_{j>m} |a_j| \right)^2 ((3) \text{ and Theorem 2 of [10]}$$

$$= 0 \quad \left(\text{by assumption } \sum_{j=0}^{\infty} |a_j| < \infty \right).$$

In view of (A.6) and (A.9) it follows from Theorem 4.2 of Billingsley ([1], p.25) that $L_n \stackrel{P}{\longrightarrow} 0$ and thus (A.2) is proved. The proof of lemma now completes.

ACKNOWLEDGEMENT. The authors thank Young Min Lee who worked as RA in this research.

References

- [1] P. Billingsley, Convergence of probability measures, Wiley, New York, 1968.
- [2] J. Esary, F. Proschan, and D. Walkup, Association of random variables with applications, Ann. Math. Statist. 38 (1967), 1466–1474.
- [3] I. Fakhre-Zakeri and J. Farshidi, A central limit theorem with random indices for stationary linear processes, Statist. Probab. Lett. 17 (1993), 91–95.
- [4] I. Fakhre-Zakeri and S. Lee, Sequential estimation of the mean of a linear process, Sequential Anal. 11 (1992), 181–197.
- [5] I. Fakhre-Zakeri and S. Lee, A random functional central limit theorem for stationary linear processes generated by matingales, Statist. Probab. Lett. 35 (1997), 417–422.
- [6] E. J. Hannan, Multivariate time series., Wiley, New York, 1970.
- [7] E. L. Lehmann, Some concepts of dependence, Ann. Math. Statist. 37 (1966), 1137-1153.
- [8] C. M. Newman, Normal fluctuations and the FKG inequalities, Comm. Math. Phys. 74 (1980), 119–128.
- [9] ______, Asymptotic independence and limit theorems for positively and negatively dependent random variables, in: Y.L. Tong, ed. Inequalities in statistics and probability (IMS Lecture Notes-Monograph Series) 5 (1984), 127–140. Hayward, CA.
- [10] C. M. Newman and A. L. Wright, An invariance principle for certain dependent sequences, Ann. Probab. 9 (1981), 671-675.

DIVISION OF MATHEMATICS AND INFORMATIONAL STATISTICS AND INSTITUTE OF BASIC NATURAL SCIENCE, WONKWANG UNIVERSITY, IKSAN 570-749, KOREA *E-mail*: starkim@wonkwang.ac.kr songhack@wonkwang.ac.kr