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ON A FUNCTIONAL CENTRAL LIMIT THEOREM
FOR STATIONARY LINEAR PROCESSES
GENERATED BY ASSOCIATED PROCESSES

TaeE-SuNGg Kimt aND M1-Hwa Kot

ABSTRACT. A functional central limit theorem is obtained for a
stationary linear process of the form X, = 3772 ajei—;, where {e:}
is a strictly stationary associated sequence of random variables with
Ee; =0, E(e?) < 0o and {a;} is a sequence of real numbers with
32520 laj] < co. A central limit theorem for a stationary linear pro-
cess generated by stationary associated processes is also discussed.

1. Introduction and main results

A finite collection of random variables {e1, - - , en} is said to be asso-
ciated if for any two coordinatewise nondecreasing functions fi, fo on R™
such that f] = fj(e1,- -+ ,€m) has finite variance for j = 1,2, cov(f1, fa)
> (). An infinite collection of random variables is said to be associated if
every finite subcollection of random variables is associated. This defini-
tion was introduced by Esary, Proschan and Walkup ([2]) as an exten-
sion of the bivariate notion of positive quadrant dependence of Lehmann
([7])- A large amount of papers has been concerned with limit theorems
for associated processes (see, for example, Newman ([8], [9]).

Let {X:, t € Z*} be a stationary linear process defined on a proba-
bility space (€2, F, P) of the form

(1) Xt = Zajet_j,
j=0
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where {a;} is a sequence of real numbers with 3 72 |a;| < co and {e;}
is a strictly stationary process such that Ee; = 0 and 0 < FEe? < co.

The linear processes are special importance in time series analysis
and they arise from a wide variety of contexts (see, e.g., Hannan ([6])
Ch.6). Applications to economics, engineering and physical sciences are
extremely broad and a vast amount of literature is devoted to the study
of the limit theorems for linear processes under various conditions on ;.
For the linear processes, Fakhre-Zakeri and Lee ([4]) and Fakhre-Zakeri
and Farshidi ([3]) established a central limit theorem (CLT) under the
iid assumption on €; and Fakhre-Zakeri and Lee ([5]) proved a functional
central limit theorem (FCLT) under the strong mixing condition on ¢;.

Let Sp = Yin) X and 72 = 02(3°2 a;)*. Define, for n > 1, the
stochastic process

2) En(u) = 17277 1S, w € [0,1],

where [z] is the greatest integer not exceeding z.

In this paper, we establish a CLT (FCLT) for a strictly stationary
linear process of the form (1), generated by an associated process {e;}.
More precisely, we will prove the following theorems:

THEOREM 1. Let {X,} be a stationary linear process of the form (1),
where {a;} is a sequence of constants with 3222 |a;| < oo and {e:} is
a strictly stationary associated process with Fe; = 0, 0 < Ee? < co.
Assume

o0

(3) 0<o?=Eéeé+ ZZE(elet) < 00.
t=2

Then the linear process {X.} fulfills the CLT.

THEOREM 2. Let {X;} be a stationary linear process of the form (1)
defined in Theorem 1. If (3) fulfilled then the process {{,} satisfies the
FCLT, that is, the process {£,} converges weakly to Wiener measure W
on the space of all functions on [0,1], which have left hand limits and
are continuous from the right.

2. Proofs

The following lemma needs to prove Theorems 1 and 2 and it is proved
by modifying the proof of Lemma 3 in Fakhre-Zakeri and Lee ([5]).
Doob’s maximal inequality played important role in their proof. How-
ever, in our case, Newman and Wrights’ maximal inequality E(maxi<g<n
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ler + -+ +ex]?) < no? (see Theorem 2 of Newman and Wright ([10]) will
be used.

LEMMA 1. Let {&;} be a strictly stationary associated process with
Ee =0, 0 < B¢ < oo . Let Xy = Y 20aj65, Sk = Y0y Xy,
X, = (Z]O‘io aj) ¢ and Sj, = Zle X,, where {a;} is a sequence of real
numbers with } 72 la;| < oo. If (3) are fulfilled, then

1 = P
(4) (n72) max |5, = S| — 0.

Proof. See Appendix. a

Proof of Theorem 1. As in Lemma 1 set

and

t=1 j= t=1
Then
E(X:)> = E(_aje)
=0
= () _4)’E€]
7=0
(5) < (O lag)?Eef < oo
j=0
5 oo L o) (o] 00
EX}+2) E(XiX) = O a)’Ed+20> ;)Y E(ae)
t=2 7=0 7=0 t=2
(6) = (D) aj)%0* =7 < oo by (3)
7=0

and X;'s are stationary associated process (see [2]). Thus {X;, t € Z*}
satisfies the CLT by Theorem 12 of [9], that is,

(7) n~28, 25 N(0,72).
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According Lemma 1 we also have
(8) n~2(8, — Su| 25 0.
Hence from (7) and (8) the desired conclusion follows. O
Proof of Theorem 2. Note that {X;} is a stationary associated process
and that {X;} satisfies conditions of Theorem 3 of Newman and Wright

([10]) according to (5) and (6). This implies that Theorem 2 holds for
the sequence {&,}, where we define &, as in (2), but S, replacing by

Siry)- By Lemma 1 |n(u) — &n(w)] 2,0 for all 0 < u < 1. Hence, the
desired conclusion follows. O

Appendix

Proof of Lemma 1. Like in the proof of Lemma 3 of [5] we have

§k = i(kz-:taj)et+2k:<ji (Ij)ft

Thus

Sk— S = —Zk: (iajet_j) +§k: ( iﬂaj) €

It suffices to prove

(A1) n"% max |1 0,
1<k<n
and
(A.2) n~7 max |11) 0.
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First we have for
2
k oo
n"'E max E g aj€¢—;
1<k<n -
t=1 j=t
2

oo JAk
=n"'E max E E aj€t—j
1<k<n |
T j=1t=1

Ak

E €t—j
t=1

(A.3) (by Minkowski’s inequality)
2

2
2y 3

o
<n7t E laj| { E max
= 1<k<n

o0
<o [ S lajlo(i An)
j=1

(by (3) and Theorem 2 of [10])

2
[ers]

= | Y lajlo((G An)/n)

j=1
(by the dominated convergence theorem)
= o(1).

Hence (A.1) is proved by Markov inequality. To prove (A.2) write
IT = Iy + L,
where
Il = arep +an(ep +€p1) + -+ apleg + -+ €1)
and

Iy = (akg1 + apqo + - )(ep + - +€1),

and let {p,} be a sequence of positive integers such that

(A.4) pn, — 00 and p,/n — 0 as n — 0.
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Then
1
~2 max |11
n ngni k2]
0 1
<D oyl n77 max fep 4o+ el
(A.5) 7=0 o

_1
+ Z|aj| nTE max fey 4 -+ e
J>Pn
= IIT + IV (say).

It follows from (3) and (A.4) that

o 2
Dolol | nB g fak e bl

2

oo

< [ Ylajl | *@a/m) =o(1)

=0

by Theorem 2 of Newman and Wright ([10]) and thus IIT 0 by
Markov inequality. Similarly, by assumption E;”;O la;| < oo and Theo-
rem 2 of Newman and Wright ([10])

2

-1 2
j;: la;| | n Elrél%xnle1+~'+ek|
n

2
< (Z la;| | o =o(1)

J>pn

and thus IV -2 0 by Markov inequality. Hence, n=2 maxi<k<n | I x2]

P, 0. It remains to show that L, = n_% maxy<k<n [ Ix1] £, 0. For
each m > 1, define g1, = bieg + ba(er + €x—1) + -+ + bp(ex + -+ +
€1), where by = ai for k < n and by = 0 otherwise and let L, ,, =

1
n”2 maxi<g<n |IIx1,m|. Then

(A.6) Logn <1 % (lag] + -+ |am|)(Jer] + -+ Jem]) — 0
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as n — oo for each m, and

k
(A7) |Lnm — Ln| < n”3 1?,?%; Z(ai —bi)(ex + + €k—it1)]| -
Since
k
> (@i —bi)(ex+ -+ + ki1
i=1

0, k<m
B \E?:m+1 ailer + -+ 6k—i+1)] , otherwise,
the right-hand side of (A.7)

k
1
n~ 2 max ( E |ai||ek+---+ek_i+1|>
m<k<n \ .
i=m+1
. k

n”z max E la;| max |ex + - + €x—it1l

(A.8) m<k<n i1 m<i<k

n"% Z la;] max max (le1+ -+ ex| + |er + - + €x—s|)
m<k<n m<i<k

IA

IA

IA

i>m

<n72 > Iail( max leg 4 - + €|
‘ m<k<n
>m

+ max max |61+"-—|—6k_i|>

m<k<nm<i<k
_1
<n”2 Z lag| (1Iélja§)(n|€1 +- gl + 1ré1]fomsxn|el + €j|)
>m
_1
ot g
>m

Therefore, by Theorem 2 of Newman and Wright ([10}) it follows from
(A.6), (A.8) and Markov inequality that for any § > 0,

lim lim supP(|Lpm — Ln| > 6)

mMm-—00 N—00

2

< lim 2252 E la;| | limsup n™'E max |e; + - + ¢
m—o0 ~ n 1<j<n
3o om
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2

< o lim §2.92 ,
< U%Pmd 2 ; laj{ | ((3) and Theorem 2 of [10]
i>m

(A.9)

x
=0 | by assumption Z la;| < oo
7=0

In view of (A.6) and (A.9) it follows from Theorem 4.2 of Billingsley

([1], p.25) that L, £, 0 and thus (A.2) is proved. The proof of lemma
now completes. 0
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