ON A FUNCTIONAL CENTRAL LIMIT THEOREM FOR STATIONARY LINEAR PROCESSES GENERATED BY ASSOCIATED PROCESSES

TAE-SUNG KIM† AND MI-HWA KO†

ABSTRACT. A functional central limit theorem is obtained for a stationary linear process of the form \(X_t = \sum_{j=0}^{\infty} a_j \epsilon_{t-j} \), where \(\{\epsilon_t\} \) is a strictly stationary associated sequence of random variables with \(\text{E} \epsilon_t = 0 \), \(\text{E}(\epsilon_t^2) < \infty \) and \(\{a_j\} \) is a sequence of real numbers with \(\sum_{j=0}^{\infty} |a_j| < \infty \). A central limit theorem for a stationary linear process generated by stationary associated processes is also discussed.

1. Introduction and main results

A finite collection of random variables \(\{\epsilon_1, \ldots, \epsilon_m\} \) is said to be associated if for any two coordinatewise nondecreasing functions \(f_1, f_2 \) on \(\mathbb{R}^m \) such that \(\tilde{f}_j = f_j(\epsilon_1, \ldots, \epsilon_m) \) has finite variance for \(j = 1, 2 \), \(\text{cov}(\tilde{f}_1, \tilde{f}_2) \geq 0 \). An infinite collection of random variables is said to be associated if every finite subcollection of random variables is associated. This definition was introduced by Esary, Proschan and Walkup ([2]) as an extension of the bivariate notion of positive quadrant dependence of Lehmann ([7]). A large amount of papers has been concerned with limit theorems for associated processes (see, for example, Newman ([8], [9]).

Let \(\{X_t, t \in \mathbb{Z}^+\} \) be a stationary linear process defined on a probability space \((\Omega, \mathcal{F}, P) \) of the form

\[
X_t = \sum_{j=0}^{\infty} a_j \epsilon_{t-j},
\]

Received January 16, 2001.

2000 Mathematics Subject Classification: 60F05, 60F17.

Key words and phrases: central limit theorem, functional central limit theorem, linear process, associated.

†This paper was partially supported by Korea Research Foundation Grant (KRF-2002-042).

†This paper was partially supported by Statistical Research Center for Complex Systems, Seoul National University.
where \(\{a_j\} \) is a sequence of real numbers with \(\sum_{j=0}^{\infty} |a_j| < \infty \) and \(\{\epsilon_t\} \) is a strictly stationary process such that \(E\epsilon_t = 0 \) and \(0 < E\epsilon_t^2 < \infty \).

The linear processes are special importance in time series analysis and they arise from a wide variety of contexts (see, e.g., Hannan [6] Ch.6). Applications to economics, engineering and physical sciences are extremely broad and a vast amount of literature is devoted to the study of the limit theorems for linear processes under various conditions on \(\epsilon_t \). For the linear processes, Fakhre-Zakeri and Lee ([4]) and Fakhre-Zakeri and Farshidi ([3]) established a central limit theorem (CLT) under the iid assumption on \(\epsilon_t \) and Fakhre-Zakeri and Lee ([5]) proved a functional central limit theorem (FCLT) under the strong mixing condition on \(\epsilon_t \).

Let \(S_n = \sum_{t=1}^{n} X_t \) and \(\tau^2 = \sigma^2(\sum_{j=0}^{\infty} a_j)^2 \). Define, for \(n \geq 1 \), the stochastic process

\[
\xi_n(u) = n^{-1} \tau^{-1} S_{\lfloor nu \rfloor}, \quad u \in [0, 1],
\]

where \(\lfloor x \rfloor \) is the greatest integer not exceeding \(x \).

In this paper, we establish a CLT (FCLT) for a strictly stationary linear process of the form (1), generated by an associated process \(\{\epsilon_t\} \). More precisely, we will prove the following theorems:

Theorem 1. Let \(\{X_t\} \) be a stationary linear process of the form (1), where \(\{a_j\} \) is a sequence of constants with \(\sum_{j=0}^{\infty} |a_j| < \infty \) and \(\{\epsilon_t\} \) is a strictly stationary associated process with \(E\epsilon_t = 0 \), \(0 < E\epsilon_t^2 < \infty \). Assume

\[
0 < \sigma^2 = E\epsilon_t^2 + 2 \sum_{t=2}^{\infty} E(\epsilon_t \epsilon_{t-1}) < \infty.
\]

Then the linear process \(\{X_t\} \) fulfills the CLT.

Theorem 2. Let \(\{X_t\} \) be a stationary linear process of the form (1) defined in Theorem 1. If (3) fulfilled then the process \(\{\xi_n\} \) satisfies the FCLT, that is, the process \(\{\xi_n\} \) converges weakly to Wiener measure \(W \) on the space of all functions on \([0, 1] \), which have left hand limits and are continuous from the right.

2. Proofs

The following lemma needs to prove Theorems 1 and 2 and it is proved by modifying the proof of Lemma 3 in Fakhre-Zakeri and Lee ([5]). Doob’s maximal inequality played important role in their proof. However, in our case, Newman and Wright’s maximal inequality \(E(\max_{1 \leq k \leq n} \)
\(|\epsilon_1 + \cdots + \epsilon_k|^2 \leq n\sigma^2\) (see Theorem 2 of Newman and Wright ([10])) will be used.

Lemma 1. Let \(\{\epsilon_t\}\) be a strictly stationary associated process with \(E\epsilon_t = 0, 0 < E\epsilon_t^2 < \infty\). Let \(\hat{X}_t = \sum_{j=0}^{\infty} a_j \epsilon_{t-j}, \hat{S}_k = \sum_{t=1}^{k} \hat{X}_t, \hat{X}_t = \left(\sum_{j=0}^{\infty} a_j\right) \epsilon_t\) and \(\hat{S}_k = \sum_{t=1}^{k} \hat{X}_t\), where \(\{a_j\}\) is a sequence of real numbers with \(\sum_{j=0}^{\infty} |a_j| < \infty\). If (3) are fulfilled, then

\[
\left(\frac{n^{-\frac{1}{2}}}{1 \leq k \leq n}\right) \max |\hat{S}_k - S_k| \overset{P}{\rightarrow} 0.
\]

Proof. See Appendix. \(\square\)

Proof of Theorem 1. As in Lemma 1 set

\[
\hat{X}_t = \sum_{j=0}^{\infty} a_j \epsilon_t
\]

and

\[
\hat{S}_n = \sum_{t=1}^{n} \hat{X}_t = \left(\sum_{j=0}^{\infty} a_j\right) \sum_{t=1}^{n} \epsilon_t.
\]

Then

\[
E(\hat{X}_t)^2 = E\left(\sum_{j=0}^{\infty} a_j \epsilon_t\right)^2
\]

\[
= \left(\sum_{j=0}^{\infty} a_j\right)^2 E\epsilon_t^2
\]

\[
\leq \left(\sum_{j=0}^{\infty} |a_j|\right)^2 E\epsilon_t^2 < \infty,
\]

\[
E\hat{X}_1^2 + 2 \sum_{t=2}^{\infty} E(\hat{X}_1 \hat{X}_t) = \left(\sum_{j=0}^{\infty} a_j\right)^2 E\epsilon_t^2 + 2 \left(\sum_{j=0}^{\infty} a_j\right)^2 \sum_{t=2}^{\infty} E(\epsilon_1 \epsilon_t)
\]

\[
= \left(\sum_{j=0}^{\infty} a_j\right)^2 \sigma^2 = \tau^2 < \infty \text{ by (3)}
\]

and \(\hat{X}_t\)'s are stationary associated process (see [2]). Thus \(\{\hat{X}_t, t \in \mathbb{Z}^+\}\) satisfies the CLT by Theorem 12 of [9], that is,

\[
n^{-\frac{1}{2}} \hat{S}_n \overset{D}{\rightarrow} N(0, \tau^2).
\]
According Lemma 1 we also have

\[n^{-\frac{1}{2}} |\tilde{S}_n - S_n| \xrightarrow{P} 0. \]

Hence from (7) and (8) the desired conclusion follows. \qed

Proof of Theorem 2. Note that \(\{\tilde{X}_t\} \) is a stationary associated process and that \(\{X_t\} \) satisfies conditions of Theorem 3 of Newman and Wright ([10]) according to (5) and (6). This implies that Theorem 2 holds for the sequence \(\{\xi_n\} \), where we define \(\xi_n \) as in (2), but \(S_{[nu]} \) replacing by \(S_{[nu]} \). By Lemma 1 \(|\tilde{\xi}_n(u) - \xi_n(u)| \xrightarrow{P} 0 \) for all \(0 \leq u \leq 1 \). Hence, the desired conclusion follows. \qed

Appendix

Proof of Lemma 1. Like in the proof of Lemma 3 of [5] we have

\[
\tilde{S}_k = \sum_{t=1}^{k} \left(\sum_{j=0}^{k-t} a_j \right) \epsilon_t + \sum_{t=1}^{k} \left(\sum_{j=k-t+1}^{\infty} a_j \right) \epsilon_t
\]

\[
= \sum_{t=1}^{k} \left(\sum_{j=0}^{t-1} a_j \epsilon_{t-j} \right) + \sum_{t=1}^{k} \left(\sum_{j=k-t+1}^{\infty} a_j \right) \epsilon_t.
\]

Thus

\[
\tilde{S}_k - S_k = - \sum_{t=1}^{k} \left(\sum_{j=t}^{\infty} a_j \epsilon_{t-j} \right) + \sum_{t=1}^{k} \left(\sum_{j=k-t+1}^{\infty} a_j \right) \epsilon_t
\]

\[
= I + II \text{ (say)}.
\]

It suffices to prove

\[(A.1) \quad n^{-\frac{1}{2}} \max_{1 \leq k \leq n} |I| \xrightarrow{P} 0,\]

and

\[(A.2) \quad n^{-\frac{1}{2}} \max_{1 \leq k \leq n} |II| \xrightarrow{P} 0.\]
First we have for
\[
\begin{align*}
n^{-1}E \max_{1 \leq k \leq n} \left| \sum_{t=1}^{k} \sum_{j=t}^{\infty} a_{j} \epsilon_{t-j} \right|^{2} \\
= n^{-1}E \max_{1 \leq k \leq n} \left(\sum_{j=1}^{\infty} \sum_{t=1}^{j \wedge k} a_{j} \epsilon_{t-j} \right)^{2} \\
\leq n^{-1} \left(\sum_{j=1}^{\infty} |a_{j}| \left\{ E \max_{1 \leq k \leq n} \left| \sum_{t=1}^{j \wedge k} \epsilon_{t-j} \right|^{2} \right\}^{\frac{1}{2}} \right)^{2}
\end{align*}
\]
(A.3) (by Minkowski’s inequality)
\[
\leq n^{-1} \left(\sum_{j=1}^{\infty} |a_{j}| \sigma(j \wedge n)^{\frac{1}{2}} \right)^{2}
\]
(by (3) and Theorem 2 of [10])
\[
= \left(\sum_{j=1}^{\infty} |a_{j}| \sigma((j \wedge n)/n)^{\frac{1}{2}} \right)^{2}
\]
(by the dominated convergence theorem)
\[
= o(1).
\]
Hence (A.1) is proved by Markov inequality. To prove (A.2) write
\[
II = II_{k1} + II_{k2},
\]
where
\[
II_{k1} = a_{1} \epsilon_{k} + a_{2}(\epsilon_{k} + \epsilon_{k-1}) + \cdots + a_{k}(\epsilon_{k} + \cdots + \epsilon_{1})
\]
and
\[
II_{k2} = (a_{k+1} + a_{k+2} + \cdots)(\epsilon_{k} + \cdots + \epsilon_{1}),
\]
and let \(\{p_{n}\}\) be a sequence of positive integers such that
\[
(A.4) \quad p_{n} \to \infty \text{ and } p_{n}/n \to 0 \text{ as } n \to \infty.
\]
Then
\[
\begin{align*}
& n^{-\frac{1}{2}} \max_{1 \leq k \leq n} |I_{I_k2}| \\
& \leq \left(\sum_{j=0}^{\infty} |a_j| \right) n^{-\frac{1}{2}} \max_{1 \leq k \leq p_n} |\epsilon_1 + \cdots + \epsilon_k| \\
& + \left(\sum_{j>p_n} |a_j| \right) n^{-\frac{1}{2}} \max_{1 \leq k \leq n} |\epsilon_1 + \cdots + \epsilon_k| \\
& = III + IV \text{ (say)}.
\end{align*}
\]

It follows from (3) and (A.4) that
\[
\begin{align*}
& \left(\sum_{j=0}^{\infty} |a_j| \right)^2 n^{-1} E \max_{1 \leq k \leq p_n} |\epsilon_1 + \cdots + \epsilon_k|^2 \\
& \leq \left(\sum_{j=0}^{\infty} |a_j| \right)^2 \sigma^2 (p_n/n) = o(1)
\end{align*}
\]
by Theorem 2 of Newman and Wright ([10]) and thus \(III \overset{P}{\rightarrow} 0 \) by Markov inequality. Similarly, by assumption \(\sum_{j=0}^{\infty} |a_j| < \infty \) and Theorem 2 of Newman and Wright ([10])

\[
\begin{align*}
& \left(\sum_{j>p_n} |a_j| \right)^2 n^{-1} E \max_{1 \leq k \leq n} |\epsilon_1 + \cdots + \epsilon_k|^2 \\
& \leq \left(\sum_{j>p_n} |a_j| \right)^2 \sigma^2 = o(1)
\end{align*}
\]
and thus \(IV \overset{P}{\rightarrow} 0 \) by Markov inequality. Hence, \(n^{-\frac{1}{2}} \max_{1 \leq k \leq n} |I_{I_k2}| \overset{P}{\rightarrow} 0 \). It remains to show that \(L_n = n^{-\frac{1}{2}} \max_{1 \leq k \leq n} |I_{I_k2}| \overset{P}{\rightarrow} 0 \). For each \(m \geq 1 \), define \(I_{I_{k1,m}} = b_1 \epsilon_k + b_2 (\epsilon_k + \epsilon_{k-1}) + \cdots + b_k (\epsilon_k + \cdots + \epsilon_1) \), where \(b_k = a_k \) for \(k \leq n \) and \(b_k = 0 \) otherwise and let \(L_{n,m} = n^{-\frac{1}{2}} \max_{1 \leq k \leq n} |I_{I_{k1,m}}| \). Then
\[
(A.6) \quad L_{n,m} \leq n^{-\frac{1}{2}} (|a_1| + \cdots + |a_m|)(|\epsilon_1| + \cdots + |\epsilon_m|) \overset{P}{\rightarrow} 0
\]
as \(n \to \infty \) for each \(m \), and

\[
(A.7) \quad |L_{n,m} - L_n| \leq n^{-\frac{1}{2}} \max_{1 \leq k \leq n} \left| \sum_{i=1}^{k} (a_i - b_i)(\epsilon_k + \cdots + \epsilon_{k-i+1}) \right|.
\]

Since

\[
\left| \sum_{i=1}^{k} (a_i - b_i)(\epsilon_k + \cdots + \epsilon_{k-i+1}) \right| = \begin{cases}
0, & k \leq m \\
\left| \sum_{i=m+1}^{k} a_i(\epsilon_k + \cdots + \epsilon_{k-i+1}) \right|, & \text{otherwise},
\end{cases}
\]
the right-hand side of \((A.7)\)

\[
\leq n^{-\frac{1}{2}} \max_{m < k \leq n} \left(\sum_{i=m+1}^{k} |a_i| |\epsilon_k + \cdots + \epsilon_{k-i+1}| \right)
\]

\[
\leq n^{-\frac{1}{2}} \max_{m < k \leq n} \sum_{i=m+1}^{k} |a_i| \max_{m < l \leq k} |\epsilon_k + \cdots + \epsilon_{k-l}|.
\]

\[
(A.8)
\]

\[
\leq n^{-\frac{1}{2}} \sum_{i > m} |a_i| \max_{m < k \leq n} \max_{m < l \leq k} (|\epsilon_1 + \cdots + \epsilon_k| + |\epsilon_1 + \cdots + \epsilon_{k-l}|)
\]

\[
\leq n^{-\frac{1}{2}} \sum_{i > m} |a_i| \left(\max_{1 \leq i \leq n} |\epsilon_1 + \cdots + \epsilon_{i}| + \max_{1 \leq i \leq n} |\epsilon_1 + \cdots + \epsilon_{i-1}| \right)
\]

\[
= 2n^{-\frac{1}{2}} \sum_{i > m} |a_i| \max_{1 \leq j \leq n} |\epsilon_1 + \cdots + \epsilon_{j}|.
\]

Therefore, by Theorem 2 of Newman and Wright ([10]) it follows from \((A.6), (A.8)\) and Markov inequality that for any \(\delta > 0 \),

\[
\lim_{m \to \infty} \lim_{n \to \infty} \sup P(|L_{n,m} - L_n| > \delta)
\]

\[
\leq \lim_{m \to \infty} 2^2 \delta^2 \left(\sum_{j > m} |a_j| \right)^2 \lim_{n \to \infty} n^{-1} E \max_{1 \leq j \leq n} |\epsilon_1 + \cdots + \epsilon_{j}|^2
\]
\leq \sigma \lim_{m \to \infty} \delta^2 \cdot 2^2 \left(\sum_{j > m} |a_j| \right)^2 \quad (3) \text{ and Theorem 2 of [10]}

(A.9)

= 0 \quad \text{by assumption} \sum_{j=0}^{\infty} |a_j| < \infty.

In view of (A.6) and (A.9) it follows from Theorem 4.2 of Billingsley ([1], p.25) that \(L_n \xrightarrow{P} 0 \) and thus (A.2) is proved. The proof of lemma now completes. \qed

Acknowledgement. The authors thank Young Min Lee who worked as RA in this research.

References

Division of Mathematics and Informational Statistics and Institute of Basic Natural Science, WonKwang University, Iksan 570-749, Korea
E-mail: starkim@wonkwang.ac.kr
songhack@wonkwang.ac.kr