A Study on the Reactivity of Zinc-based Sorbents Using Yellow Earth as Support at Middle Temperatures

황토를 지지체로 사용한 중온건식 아연계 탈황제의 반응특성 연구

  • 박노국 (영남대학교 응용화학공학부, 국가지정연구실) ;
  • 정용화 (영남대학교 응용화학공학부, 국가지정연구실) ;
  • 이종대 (영남대학교 응용화학공학부, 국가지정연구실) ;
  • 류시옥 (영남대학교 응용화학공학부, 국가지정연구실) ;
  • 이태진 (영남대학교 응용화학공학부, 국가지정연구실)
  • Published : 2003.11.01

Abstract

The peformence tests of zinc-based desulfurization sorbents using the yellow earth as support for the hot gas clean up were carried out. The zinc-based sorbent with 25 wt% yellow earth was prepared, and their properties such as the reaction rate, the sulfur capacity and the attrition resistance, were investigated. The reactivity tests for hot gas desulfurization was performed at middle temperatures (sulfidation/regeneration:480$^{\circ}C$/580$^{\circ}C$). During multi-cyclic desulfurization, the deactivation of zinc-based sorbent was decreased by the addition of yellow earth, and their efficiency was enhanced. The ZnO/yellow earth sorbent had high reactivity, good regenerability, long-term durability (about 19 gS/100 g sorbent for 10-cycles) and high attrition resistance (AI=19.1%). It was concluded that the peroperties of zinc-based sorbent were improved by metal oxides (Fe$_2$O$_3$, Na$_2$O, MnO$_2$, etc) in the yellow earth. From these results, it was confirmed that the desulfurization properties of zinc-based sorbents at middle temperatures could be improved by the yellow earth using as support.

본 연구에서는 황토를 지지체로 사용한 고온연료가스 정제용 아연계 탈황제의 성능시험을 수행하였다. 산화아연과 황토를 75:25의 비율로 혼합하여 탈황제를 제조하였고 황화/재생 반응속도, 황수용능력, 내마모성을 조사하였다. 탈황 및 재생반응실험은 중온(황화/재생 : 48$0^{\circ}C$/58$0^{\circ}C$)에서 수행되었다. 황토를 지지체로 사용한 아연계 탈황제는 장기사이클실험중에 나타나는 급속한 비활성화가 억제되었으며 반응속도, 황수용능력, 내구성 그리고 내마모성이 개선되었다. 황수용능력은 약 19gS/100g sorbent정도로 10 cycle 까지 유지되었으며, 내마모도는 AI=19.1%정도였다. 아연계 탈황제의 성능개선은 황토에 함유된 금속산 화물(Fe$_2$O$_3$, $Na_2$O, MnO$_2$)의 영향으로 판단된다. 이들 결과로부터 황토를 지지체로 사용하여 중온건식 아연계 탈황제의 특성을 개선할 수 있음을 확인하였다.

Keywords

References

  1. 박영성, 이영우. 손재익: '석탄가스화 복합발전용 고온건식 탈황기술', 화학공업과 기술, 11(5), 366 (1993)
  2. 이영우, 손재익: '복합발전용 가압유동층 연소기술', 화학공업과 기술, 13(1), 53 (1995)
  3. 이창근. 위영호,: 'IGCC를 위한 고온건식탈황기술', 화학공업과 기술, 13(5), 466 (1995)
  4. 이영우, 이태진, 이창근: '고온건식탈황용 Zine Titanate 탈황제의 개발동향(I)', 화학공업과 기술, 15(3), 273 (1997)
  5. 이영우, 이태진, 이창근: '고온건식탈황용 Zine Titanate 탈황제의 개발동향(II)', 화학공업과 기술, 15(4), 342 (1997)
  6. Rutkowski, M.D., Klett, M.G. and Zaharchuk, R: 'Assesrnent of Hot Gas Containment Control', Proceeding of the Advanced Coal-Fired Power Systems '96 Review Meeting, METC (1996)
  7. Copeland, R.J., Cesario, M., Dubovik, M., Feinberg, D. and Windecker, B.: 'A Long Life ZnO-TiOSorbent', Proceeding of the Advanced Coal-Fired Power Systems '95 Review Meeting Volume 1, 394 (1995)
  8. Copeland, RJ., Cesario, M., Dubovik, M., Feinberg, D., NacQueen, B., Sibold, J., Windecker, B. and Yang, J.: 'Long Life $ZnO-TiO_2 $ and Novel Sorbent', Proceeding of the Advanced Coal-Fired Power Systems '96 Review Meeting (1996)
  9. Ayala, R and March, D.W : 'Cheracterization and Long Range Reactivity of Zinc Ferrite in HighTemperature Desulfurization Processes', Ind. Eng. Chern. Res., 30(1), 55 (1991) https://doi.org/10.1021/ie00049a009
  10. Woods, M.E. and Gangwal, S.K.: 'Kinetics of the Reactions of a Zinc Ferrite Sorbent in High-Temperature Coal Gas Desulfurization', Ind. Eng. Chern. Res., 30(1), 100 (1991) https://doi.org/10.1021/ie00049a015
  11. Gibson, J.B. and Herrison, D.P.: 'The Reaction between Hydrogen Sulfide and Spherical Pellets of Zinc Oxide', Ind. Eng. Chern. Pro. Des. Dev., 19, 231 (1980) https://doi.org/10.1021/i260074a005
  12. Sa, L.N., Focht, G.D., Ranade, P.v. and Harrison, D.P.: 'High-Temperature Desulfurization Using Zinc Ferrite: Solid Structural Property Changes', Chern. Eng. Sci., 44(2), 215 (1989) https://doi.org/10.1016/0009-2509(89)85059-6
  13. 임창진, 차영권, 박노국, 류시옥, 이태진, 김재창: '중온용 탈황제 개발을 위한 Zinc Titanate 제조 및 반응특성', 화학공학, 38(1), 111 (2000)
  14. 강석찬, 전회권, 이태진, 류시옥, 김재창: '지지체에 따른 아연계 탈황제의 특성', 화학공학, 40(3), 289 (2002)
  15. Gupta, RP. and Gangwal, S.K.: 'Enhanced Durability of High-Temperature Desulfurization Sorbents for Fluidized-Bed Applications', Topical Report to DOE/ METC, November (1992)
  16. ASTM D 5757 95
  17. Sasaoka, E., Norimasa, S., Akifumi, M. and Yusaku, S.: 'Modification of $ZnO-TiO_2$, High-Temperature Desulfurization Sorbent by $ZrO_2$, Addition', Ind. Eng. Chern. Res., 38, 958 (1999) https://doi.org/10.1021/ie980569x
  18. Jun, H.K., Lee, TJ. and Kim, J.e.: 'Role of Iron Oxide in Promotion of Zn-Ti-Based Desulfurization Sorbents during Regeneration at Middle Temperatures', Ind. Eng. Chern. Res., 41, 4733 (2002) https://doi.org/10.1021/ie020209g
  19. Lee, H.S., Kang, M.P., Song, YS., Rhee, Y.W. and Lee, TJ.: 'Chatacteristics of $CuO-Fe_2O_3$ 203 Sorbents', KJChE, 18(5), 635 (2001)
  20. Jun, H.K., Lee, T.J., Ryu, S.O. and Kim, J.C.: 'A Study of Zn-Ti-Based $H_2S$ Removal Sorbents Promoted with Cobalt Oxides', Ind. Eng. Chern. Res., 40, 3547 (2001) https://doi.org/10.1021/ie0011167
  21. Westmoreland, P.W. and Harrison, D.P.: 'Evalution of Candidate Solid for High Temperature Desulfurization of Low Btu Gases', Env. Sci. Tech., 10, 15 (1976) https://doi.org/10.1021/es60112a904
  22. Gupta, R.P., Gangwal, S.K. and Johnson, E.W.: 'Integration and Testing of Hot Desulfurization and EntrainedFlow Gasification for Power Generation Systems-Volume II. Evaluation of Zinc Loss from Zinc titanate Sorbents During Hot Gas Desulfurization', Topical Report to DOE/METC (1993)