Abstract
A novel reference point detection method is proposed by exploiting tile gradient probabilistic model that captures the curvature information of fingerprint. The detection of reference point is accomplished through searching and locating the points of occurrence of the most evenly distributed gradient in a probabilistic sense. The uniformly distributed gradient texture represents either the core point itself or those of similar points that can be used to establish the rigid reference from which to map the features for recognition. Key benefits are reductions in preprocessing and consistency of locating the same points as the reference points even when processing arch type fingerprints. Moreover, the new feature extraction method is proposed by improving the existing feature extraction using filterbank method. Experimental results indicate the superiority of tile proposed scheme in terms of computational time in feature extraction and verification rate in various noisy environments. In particular, the proposed gradient probabilistic model achieved 49% improvement under ambient noise, 39.2% under brightness noise and 15.7% under a salt and pepper noise environment, respectively, in FAR for the arch type fingerprints. Moreover, a reduction of 0.07sec in reference point detection time of the GPM is shown possible compared to using the leading the poincare index method and a reduction of 0.06sec in code extraction time of the new filterbank mettled is shown possible compared to using the leading the existing filterbank method.
본 논문에서는 지문인증 시스템에서 인증 성능을 향상시키기 위한 기준점 검출 알고리즘과 특징 추출에 있어서 새로운 filterbank방법을 제안한다. 제안한 기준점 검출 알고리즘 GPM(Gradient Probabilistic Method)은 4개의 방향성분을 추출하여 방향성분을 가장 균일하게 가지는 지점을 검출하는 방법이며, 기존의 Poincare index방법과 달리 수학적 통계적 방법을 사용하기 때문에 지문의 융선에 대한 세부적이고 세밀한 전처리 과정이 불필요하며, arch형태 지문의 기준점 검출에 대한 단점을 해결한다. 또한, 제안한 filterbank방법은 기존filterbank방법에서 특징의 불균일한 분포로 생기는 단점을 균일한 분포로 만들어 추출함으로써 해결한다. 제안한 GPM의 실험결과 기존의 Poincare index방법에 비해서, 일반환경뿐 아니라 잡음환경에서의 특징 추출 시간과 인증률에서 우수함을 보여준다. 특히, 제안한 GPM은 Poincare index방법에 비해서, arch type의 지문에 대한 FAR은 일반 환경에서 49%, 밝기 잡음환경에서 39.2%, salt and pepper 잡음환경에서 15.7%의 향상을 보여준다. 또한, 기준점 검출시간에 있어서, 제안한 GPM방법은 기존의 Poincare index방법보다 0.07초의 감소를 보여주며, 특징추출 시간에 있어서도 제안한 filterbank 알고리즘은 기존의 filterbank 방법에 비해서 0.06sec의 감소를 보여준다.