Synthesis of Poly(1,6-heptadiyne) Derivatives Containing Bulky Substitutents by Metathesis Polymerization

  • Jin, Sung-Ho (Department of Chemistry Education, Pusan National University) ;
  • Jin, Jeong-Yi (Department of Chemistry Education, Pusan National University) ;
  • Kim, Young-Inn (Department of Chemistry Education, Pusan National University) ;
  • Park, Dong-Kyu (Department of Chemistry, Kyungsung University) ;
  • Gal, Yeong-Soon (Polymer Chemistry Lab., Kyungil University)
  • Published : 2003.12.01

Abstract

Poly(l,6-heptadiyne) derivatives with phenoxy and 3,7-dimethyloctyloxyphenoxy substituents were synthesized using metathesis polymerization. Polymerizations using MoCl$\sub$5/ as the sole catalyst gave high yields and the resulting polymers were completely soluble in organic solvents. The polymers' structures and thermal properties were characterized using NMR and UV-Vis spectroscopy, as well as with TGA and DSC thermograms. From the analysis of the high-resolution $\^$13/C-NMR spectra, we was found that these polymers contain six-membered rings. The number-average molecular weights and polydispersities of the polymers were ca. 7.0∼20 ${\times}$ 10$^3$ and 3.1∼5.8, respectively. The glass transition temperatures of the polymers were found to be in the range 91∼159$^{\circ}C$.

Keywords

References

  1. Chem. Rev. v.100 S.K.Choi;Y.S.Gal;S.H.Jin;H.K.Kim https://doi.org/10.1021/cr960080i
  2. Handbook of Conducting H.W.Gibson;T.A.Skotheim
  3. Handbook of Organic Conductive Materials and Polymers H.S.Nalwa
  4. Syn. Met. v.65 H.Shirakawa;Y.X.Zhang;T.Okuda;K.Sakamaki https://doi.org/10.1016/0379-6779(94)90170-8
  5. Macromolecules v.28 G.S.W.Craig;R.E.Cohen;R.R.Schrock;A.Esser;W.Schrof https://doi.org/10.1021/ma00106a014
  6. J. Luminescence v.60 J.R.G.Thorne;R.D.Reid;G.G.Mcfadyen;G.S.Beddard https://doi.org/10.1016/0022-2313(94)90255-0
  7. Acc. Chem. Res. v.17 T.Masuda;T.Higashimura https://doi.org/10.1021/ar00098a002
  8. Macromolecules v.23 M.S.Ryoo;W.C.Lee;S.K.Choi https://doi.org/10.1021/ma00214a001
  9. Macromolecules v.24 S.H.Jin;S.H.Kim;H.N.Cho;S.K.Choi https://doi.org/10.1021/ma00022a025
  10. Macromolecules v.24 S.H.Han;Y.Y.Kim;Y.S.Kang;S.K.Choi https://doi.org/10.1021/ma00005a001
  11. J. Polym. Sci. Part A: Polym. Chem. v.40 S.H.Jin;J.E.Jin;S.B.Moon;H.J.Lee;Y>S.Gal;H.D.Kim;S.H.Kim;S.H.Kim;K.N.Koh https://doi.org/10.1002/pola.10188
  12. J. Polym. Sci. PartA: Polym. Chem. v.39 Y.S.Gal;S.H.Jin;J.W.Park;W.C.Lee;H.S.Lee;S.Y.Kim https://doi.org/10.1002/pola.10061
  13. Polymer (Korea) v.16 Y.S.Gal;B.Jung;W.C.Lee;S.K.Choi
  14. Mol. Cryst. & Liq. Cryst. v.371 S.H.Kim;S.H.Jin;M.S.Jang;S.B.Moon;Y>S.Gal;D.K.Moon;J.W.Park;S.K.Choi https://doi.org/10.1080/10587250108024745
  15. Korea Polym. J. v.9 Y.S.Gal;W.C.Lee;T.L.Gui;S.H.Jin;K.N.Koh;S.H.Kim;D.W.Kim;J.M.Ko;J.H.Chun
  16. J. Am. Chem. Soc. v.116 H.F.Harold;O.W.Michael;O.Richard;L.L.Beatrice;R.S.Richard;S.W.Mark
  17. Organometallics v.11 H.H.Fox;R.R.Schrock https://doi.org/10.1021/om00044a012