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Implementation and Design of a Fuzzy Power System Stabilizer
Using an Adaptive Evolutionary Algorithm

Gi-Hyun Hwang*, Min-Jung Lee*, June-Ho Park** and Gil-Jung Kim***

Abstract - This paper presents the design of a fuzzy power system stabilizer (FPSS) using an adaptive
evolutionary algorithm (AEA). AEA consists of genetic algorithm (GA) for a global search capability
and evolution strategy (ES) for a local search in an adaptive manner when the present generation
evolves into the next generation. AEA is used to optimize the membership functions and scaling fac-
tors of the FPSS. To evaluate the usefulness of the FPSS, we applied it to a single-machine infinite bus
system (SIBS) and a power system simulator at the Korea Electrotechnology Research Institute. The
FPSS displays better control performance than the conventional power system stabilizer (CPSS) for a
three-phase fault in heavy load, which is used when tuning FPSS. To show the robustness of the FPSS,
it is applied with disturbances such as change of mechanical torque and three-phase fault in nominal
and heavy load, etc. The FPSS also demonstrates better robustness than the CPSS. Experimental re-
sults indicate that the FPSS has good system damping under various disturbances such as one-line to
ground faults, line parameter changes, transformer tap changes, etc.

Keywords: adaptive evolutionary algorithm, fuzzy power system stabilizer, genetic algorithm, evolu-

tion strategy

1. Introduction

The research of a power system stabilizer (PSS) for im-
proving the stability of power systems has been conducted
as of the late 1960's. Conventionally, a lead-lag controller
has been widely used as a PSS. Root locus and Bode plot
to determine the coefficient of lead-lag controller [1-6],
pole-placement and eigenvalue control [7, 8] and a linear
optimal controller theory [9, 10] have been used. These
methods, using a model linearlized in the specific operating
point, display good control performance in a specific oper-
ating point. However, these approaches are difficult to
obtain a good control performance in case of operating
conditions such as change of load or three phase fault, etc.
Therefore, several methods based on adaptive control the-
ory [11, 12] have been proposed to give an adaptive capa-
bility to the PSS for nonlinear characteristics of the power
system. These methods can improve the dynamic charac-
teristics of power systems, but these approaches cannot be
applied for the real time control due to extended execution
time.

Recently the research surrounding intelligence control
methods such as fuzzy logic controller (FLC) and neural
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network for the PSS has greatly improved the dynamic
characteristics of power systems [13-19]. Fuzzy rules and
membership function shape should be adjusted to obtain
the best control performance in the FLC. Conventionally,
the adjustment is performed by experienced experts or trial
and error methods. Therefore, it is difficult to determine
suitable membership functions without knowledge of the
system. Recently, the evolutionary computation (EC), a
type of probabilistic optimal algorithm is employed to ad-
just the membership functions and fuzzy rules of the FLC.
The EC is based on the natural genetics and evolutionary
theory. The results of this approach demonstrate fine per-
formance [20-22].

In this paper, we propose an adaptive evolutionary algo-
rithm (AEA). The ratio of population to which the GA and
ES will apply is adaptively modified in reproducing ac-
cording to suitability. The AEA was applied to search the
optimal parameters of the membership functions and the
suitable gains of the inputs and outputs for the fuzzy power
system stabilizer (FPSS). The effectiveness of the FPSS is
demonstrated by computer simulation for the single-
machine infinite bus system (SIBS) and power system
simulator at the Korea Electrotechnology Research Insti-
tute. To show the superiority of the FPSS, its performances
are compared with those of a conventional power system
stabilizer (CPSS).
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2. Adaptive Evolutionary Algorithm

ES forms a class of optimization techniques motivated
by the reproduction of biological systems and the popula-
tion of individuals evolves towards superior solutions by
means of the mutation and selection operation. In this pa-
per, we adopted a (i, A)-ES. That is, only the A offspring
generated by mutation competes for survival and the | par-
ents are completely replaced in each generation. Also, self-
adaptive mutation step sizes are used in the ES.

For the AEA to self-adapt its use of GA and ES opera-
tors, each individual has an operator code for determining
which operator to use. Suppose ‘0’ refers to GA, and ‘1’ to
ES. At each generation, if it is more beneficial to utilize the
GA, ‘0’s should appear at the end of individuals. If it is
more beneficial to utilize the ES, ‘1’s should appear. After
reproduction by roulette wheel selection according to the
fitness, GA operations (crossover and mutation) are per-
formed on the individuals that have the operator code of
‘0’ and the ES operation (mutation) is performed on the
individuals that have an operator code of ‘1’. Elitism is
also used. The best individual in the population then repro-
duces both the GA population and ES population in the
next generation. The major procedures of the AEA are as
follows:

1. Initialization: The initial population is randomly
generated. Operator code is randomly initialized for each
individual. According to the operator code, GA operations
are performed on the individuals with operator code ‘0’,

while ES operations are applied where the operator code is ‘1°.

2. Evaluation and Reproduction: Using the selection
operator, individual chromosomes are selected in propor-
tion to their fitness, which is evaluated by the defined
objective function. After reproduction, GA operations are
performed on the individuals having an operator code of
‘0’ and the ES operations are performed on the individuals
having an operator code ‘1’. At each generation, the per-
centages of ‘1’s and ‘0’s in the operator code indicate the
performance of GA and ES operators.

3. Preservation of Minimum Number of Individuals: At
each generation, the AEA may fall into a situation where
the percentage of the offspring by one operation is nearly
100% and the offspring by another operation dies off.
Therefore, it is necessary for the AEA to preserve a certain
amount of individuals for each EC operation. In this paper,
we randomly changed the operator code of the individuals
with a higher percentage until the numbers of individuals
for each EC operation became higher than a certain amount
of individuals to be preserved. The predetermined mini-
mum number of individuals to be preserved is set to 20%
of the population size.

4. Genetic Algorithm and Evolution Strategy: Real-
valued coding is used to represent a solution. Modified

simple crossover and uniform mutation are used as genetic
operators. The modified simple crossover operator is a way
to generate offstrings population, selecting two strings ran-
domly in parent population, as shown in Fig. 1. If cross-
over occurs in k-th variable, selecting randomly two strings
in t-th generation, offstrings of r+/-th generation are
shown in Fig. 1.

< Before Crossover > < After Crossover >

t+1

S (Vi o, Vi, o, Vi) Sv o=V, ..,

: = i . .
Sw= [Wi, .., Wi ..., Wa] Sw = [Wy, o, Wi, Wisr ..., Wa ]

Vi, Vil o, Vil

Crossover point

where, Vi=a, Vi + a: W;
Wi=a, Wi+ a:V;
d:, a::Random numbers from {0, 1]
Vjij-th gene of the vector Sy
Wi j-th gene of the vector Sw
n:Number of parameters

Fig. 1 Modified simple crossover method

In uniform mutation, we selected a random k-th gene
in an individual. If an individual and the k-th component
of the individual is the selected gene, the resulting indi-
vidual is as shown in Fig. 2. Only the A offspring gener-
ated by mutation operation competes for survival and the
U parents are completely replaced in each generation.
Mutation is then performed independently on each vec-
tor element by adding a normally distributed Gaussian
random variable with mean zero and standard deviation
(0), as shown in (1). After adapting the mutation opera-
tor for ES population, if the improved ratio of individual
number is less than 6, standard deviation for the next
generation is decreased in proportion to decreased rates
of standard deviation (c;). Otherwise, standard deviation
of the next generation is increased in proportion to in-
creased rates of standard deviation (c¢;,), as shown in (2).

vitl= v+ N©,6" (1)
caXo's if  o()<é

o' ={cxa', i pW)>5 )
o' if ¢(t=68

5. Elitism: The finest individual in a population is pre-
served to perform GA and ES operations in the next gen-
eration. This mechanism not only forces the GA not to de-
teriorate temporarily, but also forces ES to exploit informa-
tion to guide a subsequent local search in the most promis-
ing subspace.
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where, Vector of independent Gaussian random

N(0,0' ) : variable with mean of zero and standard
deviations
Vi': k-th variable at t-th generation

Improved ratio of individual number after
adapting mutation operator for population
of ES in #-th generation
&: Constants

< Before Mutation >

S»,= [VI, o Vi ) Vn] _>

Mutation point

’ 1)

< After Mutation >

t+1

Se = [V oy Ve Vier oo, Val

where, Vi: Random value between upper bound and lower bound

Fig. 2 Uniform mutation method

3. Design of Fuzzy Power System Stabilizer
Using the AEA

Conventionally, we have used the knowledge of experts
and trial and error methods to tune FLC’s for a good con-
trol performance, but recently many other ways using ECs
are proposed to modify fuzzy rule and shape of fuzzy
membership function [20-22]. Scaling factors of in-
put/output and parameters of membership function of the
FPSS are optimized by means of the AEA using GA and
ES adaptively, as described in Chapter 2.

Fig. 3 displays the architecture for tuning scaling factors
of input/output and membership function shape of the
FPSS using the AEA. As shown in Fig. 3, the rotor speed
deviation of generator and the change rate for rotor speed
deviation are used as inputs of the FPSS. The control sig-
nals of the FPSS are used for enhancing power system
damping by supplementary control signals of generators.
The FPSS parameters used in this paper are given below.

- Number of input/output variables: 2/1

- Number of input/output membership functions: 7/7

- Fuzzy inference method: max-min method

- Defuzzification method: center of gravity

Vi /8 Voo LO_
Generator
G
OYYY) Vi
Excitor |
anc AVR | w
o (,
4 % =
Umax /: eft) . ® o
v FPSS de(t)
/ dt
Umin
AEA

Fig. 3 Configuration for tuning of the FPSS using AEA.
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Table 1 Fuzzy rules of proportional-differential type

NEINe NM NS ZE PS PM PB

NB NB NB NB NM NM NS ZE
NM NB NB NM NM NS ZE PS
NS NB NM NM NS ZE PS PM

ZE NM NM NS ZE PS PM PM
PS NM NS ZE PS PM PM PB
PM NS ZE PS PM PM PB PB
PB ZE PS PM PM PB PB PB

-7
=3

W A W

Fig. 4 Symmetrical membership functions

Because deviation and change-of-deviation are used as
input variables of the FPSS, proportional-derivative (PD)-
like FPSS is used. Rule base for the PD-like FPSS from the
two-dimensional phase plane of the system in terms of de-
viation (e) and change-of-deviation (de) is shown in Table
1. In Table 1, the phase plane is divided into two semi-
planes by means of a switching-line. Within the semi-
planes, positive and negative control signals are produced,
respectively. The magnitude of the control signals depends
on the distance of the state vector from the switching line.

When the AEA is tuning the membership functions,
fuzzy rules are used for PD-type, as shown in Table 1,
where, linguistic variable NB means “Negative Big”, NM
means “Negative Medium”, NS means “Negative Small”
and etc. Fig. 4 shows the triangular membership function
used in this paper. Because we use 7 fuzzy variables (PB,
PM,...,NM, NB) respectively, for input/output of the FPSS,
the total membership functions will be 21, so 63 variables
that include the center and width of all the membership
functions will be adjusted, but it takes a lengthy calculation
time to tune 63 variables using the AEA, and suffers from
undesirable converging characteristics. In this paper, we
fixed the center of ZE to 0 and positive and negative mem-
bership functions are constructed symmetrically for 0.
Therefore, the number of FPSS parameters will be reduced
to 21, which means 3 centers and 4 widths for each vari-
able as shown in Fig. 4.

The flowchart for the design of the FPSS using the pro-
posed AEA is exhibited in Fig. 5. The procedure for the
design of the FPSS using the AEA is as follows:
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Initilize Population |

Preservation of Minimum Number of Individuals

- . B

GA ES
» Crossover and mutation » Mutation

| !
'

Hitism

Yes

END

where, P: Number of population
G: Specified generation

Fig. S Flowchart for the design of FPSS using AEA

Step 1) Initialize population: Strings are randomly gen-
erated between upper bounds and lower bounds of the
membership function parameters and scaling factors of the
FPSS. The operator code is randomly set to determine
whether each string is independent of the GA or ES. The
configuration of population is described in Fig. 6. Also
scaling factors of the FPSS are tuned by the AEA.

Step 2) Evaluation: Each string generated in Step 1) is
evaluated using the fitness function in (3). As shown in (3),
the absolute deviation between the rotor speed and the ref-
erence rotor speed of the generator is used.

Fitness = L (3)

T
1+J OlCOref — ol
=

where, ®,s :Reference rotor speed of generator
at) : Rotor speed of generator
T :No. of data acquired during specified time

Step 3) Reproduction: We used a roulette wheel to re-
produce in proportion to fitness. After reproduction, the
individual operator code of ‘0’ is inserted in the population
of GA and the individual operator code of ‘1’ is inserted in

the population of ES.

Sy Py b Py Wi b Wiz SFn SFi, SFi3 *

Sy § Py [ eee || P || Wy see | Wap [| SFy || SFo || SFoy | *

So [PuJeee J P [ Wu [ oo [ Won | SFu [ SFu [sFs |+ |
where, n : Population size
P; : Center of the membership functions
Wi : Width of the membership functions
SF; : Scaling factors
* : Operator code

Fig. 6 String architecture for tuning membership functions
and scaling factors.

Step 4) Preservation of Minimum Number of Individuals:
Among the GA and ES, depending on which is stronger,
we guarantee a minimum number of individuals having
offspring that will disappear by the remaining iterations.

Step 5) GA and ES operation: The individual with an
operator code of ‘0" applies crossover and mutation in GA
operators and generates offspring. The individual with an
operator code of ‘1’ applies mutation in ES operator and
generates offspring.

Step 6) Elitism: We use elitism reproducing the fittest
individual to GA and ES population.

Step 7) Convergence criterion: We iterate Step 2) — Step
6) until being satisfied with the specified generation.

4, Case Studies

4.1 Simulation cases of single-machine infinite bus
system

We performed nonlinear simulation for the SIBS in Fig.
7 to demonstrate the performance of the proposed FPSS. A
machine has been represented by a third order single-axis
nonlinear model, as shown in the appendix. Table 2 illus-
trates the simulation coefficients of the AEA used in the
nonlinear simulation. The execution time in PC 586 (300
MHz) takes about 30 minutes to tune the parameters of the
FPSS under the conditions in Table 2. Fig. 8 shows the
membership function shape of the FPSS tuned by the AEA,
where scaling constant of deviation is 0.24, scaling con-
stant of deviation rate is 3.50 and scaling constant of output
part is 2.75. We reviewed the performance of the FPSS
proposed in this paper and compared it with the CPSS
which changes the gain of the PSS through the magnitude
of damping constant with the phase compensation method
[1]. In the CPSS, time constants (T, T,) were designed
based on phase compensation as in (4), where washout fil-
ter (Ty,) is 3 sec, stabilization gain (K),;,) is 7.09, and T, T
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are 0.1 sec and 0.065, sec respectively.

sT,, KW(I+STI ] @

vV =
5 1+5sT, 1+5sT,

where, Vs: Output of PSS

Fig. 9 (a) shows the fitness values by AEA in each gen-
cration. Fig. 9 (b) indicates the number of individuals for
'3A and ES in the AEA. As shown in Fig. 9, the number of
individuals of the GA is higher than that of individuals of
“he ES in the early generation. But, from generation to
2eneration, the number of individuals of the ES becomes
aigher than that of individuals of the GA. The AEA pro-
duces improved reliability by exploiting the “global” na-
-wure of the GA initially as well as the “local” improvement
capabilities of the ES from generation to generation.

Vie i Vool Q
R ix E
S A —— VY — E
G
jB

FFig. 7 Single-machine infinite system used in performance
evaluation

Table 2 Coefficients for simulation using AEA

Methods AEA
Size of population 50
Crossover probability 0.95
Mutation probability 0.005
) 0.5
Cy 0.95
G 1.05
C 1.05

Analysis conditions used for comparing control per-
formance of the CPSS with the FPSS optimized by AEA
are summarized in Table 3. Table 3 is classified into four
cases according to the power system simulation cases used
in designing the FPSS and in evaluating its robustness. As
seen in Table 3, Case-1 is used to design the FPSS and tune
scaling constant of input/output variable and membership
functions of the FPSS by the AEA. We used Case-2 and
(Case-4 in evaluating the robustness of the FPSS.

Table 3 Simulation cases used in evaluation of controller

performance
Simulation Operating conditions | Disturbance Fault time
cases [msec]
Case-1 Heavy load A 40
P.= 1.3 [pu]
Case-2 Q. =0.015 [pu] B -
Case-3 Nominal load A 40
P.=1.0 [pu]
Case-4 Q. = 0.015 [pu] B -
A: Three phase fault
B: Mechanical torque was changed as 0.1 [pu]
1.0 +H
. 0.8
o 0.8 ]
D]
0.2 A
0.0
-1.0 «0 .5 0.0 0.5 1.0
Error
(a) Membership function of deviation
1.0
. 0.8 -
“ o 6
; 0.4
0.2 4
0.0
-1.0 -0 .5 0.0 0.5 1.0

Error rate

(b) Membership function of change-of-deviation

Degree

© © © o o =

o ™ A o ® o
!

1.0 -0 .5 0.0 ¢ .5 1.0

Control signal

(c) Membership function of output part

Fig. 8 - Tuned membership function of FPSS

G encration

(b) Number of individuals of GA and ES in AEA

Fig. 9 Fimess and number of individuals of GA and ES in
each generation
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4.1.1 Heavy load condition

Fig. 10 shows generator angular velocity both without
the PSS and with the CPSS and FPSS under Case-1 in Ta-
ble 3. As shown in Fig. 10, the FPSS demonstrates better
control performance than the CPSS in terms of settling
time and damping effect. To evaluate the robustness of the
FPSS, Fig. 11 shows generator response characteristics in
case that the PSS is not applied. In this case, the CPSS and
the proposed FPSS are applied under Case-2 of Table 3. As
shown in Fig. 11, the FPSS shows better control perform-
ance than the CPSS in terms of settling time and damping
effect.

o [rad/sec|

) 2 4 6 [ 10

Time Isec)

Fig. 10 Responses of generator when three-phase fault
was occurred in heavy load

280 o
379

378 o

wiradfsec]
“

Time [sec)
Fig. 11 Responses of generator when mechanical torque
was changed to 0.1[pu] in heavy load

4.1.2 Nominal load condition

To evaluate the robustness of the FPSS, Figs. 12-13
show generator response characteristics in case that the
PSS is not applied, and the CPSS and proposed FPSS are
applied under Cases 3 and 4 of Table 3. As shown in Figs.
12-13, the FPSS shows better control performance than the
CPSS in terms of settling time and damping effect.

of{rad/sec|

[ 2 « 6 [l 10

Time [sec]

Fig. 12 Responses of generator when three-phase fault
was occurred in nominal load

378.0

377.5

376.5 Y (S cPss

’ ? ‘Timelhecls ) b
Fig. 13 Responses of generator when mechanical torque
was changed to 0.1[pu] in nominal load

4.1.3 Dynamic stability margin [23]

To evaluate the dynamic stability margin of the CPSS
and FPSS, a simulation study is conducted with the initial
operating conditions of light, nominal and heavy load as
given in Table 3. The mechanical torque is increased
gradually. The dynamic stability margin is described by the
maximum active power in which the system loses synchro-
nism. Table 4 shows the dynamic stability margin. In Table
4, we can find that the FPSS increases the dynamic stabil-
ity of generator.

Table 4 Dynamic stability margin

Methods CPSS EPSS

Conditions
Light | Maximum active power [pu] 102 | 106
load I[\:I:;(]lmum generator phase angle 544 5 46
Nominal Maximum active power [pu] 1.22 1.27
load ?f:;(]imum generator phase angle 235 245

4.2 Experimental Results

To show the robustness of the proposed FPSS, it has
been set up in the power system simulator at the KERI
The configuration of the power system simulator at the
KERI is shown in Fig. 14. Part 1 in Fig. 14 is a hardware
simulator. It is composed of DC motor-generator set,
transmission line simulator, DC motor drive control set and
etc. By the use of a PC connected to the microprocessor
with A/D, D/A board, angle, terminal voltage and fre-
quency, electrical power output can be measured. In Part 2
of Fig. 14, it is composed of a workstation with A/D, D/A
board and main controller for excitation. In this paper, the
FPSS tuned by GA is implemented by the workstation of
Part II for real time control. Experimental results are saved
to the PC in Part 1.

The experiment has been performed subject to the follow-
ing disturbance: 1) single phase to ground fault 2) imped-
ance of the transmission line changes 3) transformer tap
changes 4) electric light changes. When disturbance is sin-



Gi-Hyun Hwang, Min-Jung Lee, June-Ho Park and Gil-Jung Kim 187

gle phase to ground fault for 0.1 sec., the plot of frequency
deviation and electrical power output of the generator are
shown in Fig. 15. Suppose impedance of the transmission
line increases by sudden loss of one of the transmission
lines. The impedance of the transmission line restores 5
seconds following sudden loss. The plot of frequency de-
viation and electrical power output of the generator are
shown in Fig. 16. Fig. 17 shows transformer tap changes of
5% for 5 seconds, plot of frequency deviation and electri-
cal power output of the generator. When the disturbance is
a 1.25[Kw] electric light bulb during 2.5 seconds, the plot
of frequency deviation and electrical power output of the
generator are shown in Fig. 18. As shown in Fig 15 - Fig.
18, the proposed FPSS shows better system damping than
that of no PSS.

Fig. 14 Configuration of the power system simulator of
the KERI

5. Conclusion

In this paper, we tuned membership functions shape
and input/output gain of the FPSS using the AEA that is an
algorithm having a ratio of population to which the GA and
ES will be adaptively modified during reproduction
according to fitness. We analyzed simulation results of the
FPSS and the CPSS. The results are as follows:

@ As a result of applying the AEA to the design of the
FPSS, in the early generation, it is shown that the number
of population of the GA is higher than that of the popula-
tion of ES. Also, the number of population of ES grows as
the number of generation increases. This indicates that the
global search is executed through the GA during early gen-
eration and the local search is executed adaptively by
means of the ES as the number of generation increases.

) The FPSS displayed better control performance than
the CPSS in terms of settling time and damping effect
when three-phase fault under heavy load, which is used in

tuning the FPSS occurs. To evaluate the robustness of the
FPSS, we analyzed dynamic characteristic of the generator
for changeable mechanical torque in heavy load, and
change of mechanical torque and three-phase fault in
nominal load. The FPSS showed superior damping effect
to the CPSS.

@ As a result of finding the dynamic stability margin
and successive peak damping ratio, the FPSS increased dy-
namic stability margin to a greater extent and showed the
better result than the CPSS in terms of successive peak
damping ratio.

@ The FPSS has been set up for power system simulator
in the KERI. The performance of the FPSS has been
checked subject to various types of disturbances such as
single phase to ground fault, impedance of the transmission
line changes and transformer tap changes, and all the re-
sults indicate the robustness of the proposed FPSS.

10+

Frequency deviation [Hz]

Time [sec]

(a) Frequency deviation

Active power [Kw]

T T T T —
0 2 4 6 8 10
Time [sec]

(b) Electrical power output
. 15 Generator responses of one-line to ground fault
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Fig. 16 Generator response to impedance of the transmis-

Fig.

sion line changes

0.15 ~

Frequency deviation [Hz]
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(a) Frequency deviation
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(b} Electrical power output
17 Generator responses to transformer tap changes
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FPSS
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(b) Electrical power output

Fig. 18 Generator responses to electric light changes
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APPENDIX

A. System Model
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L= %[RC(E:}‘*—V» sin 8)+ (Xe+ X' W Ey'—Vecos §)]

1= %[RC(E(/'—VM cos 8)—(Xe+ Xa' )W Es'-Vwsin §))

XA"V [Re(Eq'~Vecos 8)—(Xe+ Xa' W Ea'=Vesin §)]

)Z"' [Re(Ed'—Vosin 8)+ (Xe+ X' W Eq'=Vecos 8)]

Vi = Ed'+

Vo= E/-

A=Re?+ (Xet+ Xa' ) X+ Xo')

B. Nomenclature
é : Rotor angle of generator
@  :Rotor speed of generator

s : Reference rotor speed of generator

H  :Inertia constant of generator

T, :Mechanical input of generator

X;  :d-axis synchronous reactance of generator
X;" :d-axis transient reactance of generator

X, :q-axis synchronous reactance of generator

E;” :g-axis voltage of generator
E; @ Generator field voltage
Ts* : d-axis transient time constant of generator

I : d-axis current of generator

I, : q-axis current of generator

V. :Terminal voltage

V.r :Reference voltage

Vi  : PSS signal

V. : Voltage of infinite bus

K, :AVRgain

T, : Exciter time constant

R, : Equivalent resistance of transmission line
X, : Equivalent reactance of transmission line
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