DOI QR코드

DOI QR Code

Influence of Dy2O3 Addition on Microstructure and Electrical Properties of Pr6O11 Varistor Ceramics

Pr6O11계 ZnO 바리스터 세라믹스의 미세구조 및 전기적 특성에 미치는 Dy2O3첨가의 영향

  • Nahm, Choon-Woo (Department of Electrical Engineering, Dongeui University) ;
  • Park, Jong-Ah (Department of Electrical Engineering, Dongeui University)
  • 남춘우 (동의대학교 전기공학과) ;
  • 박종아 (동의대학교 전기공학과)
  • Published : 2003.10.01

Abstract

The microstructure and electrical characteristics of $Pr_{6}$ $O_{11}$ -based ZnO varistor ceramics composed of $ZnO-Pr_{6}$ $O_{ 11}$/$-CoO-Cr_2$$O_3$-$Dy_2$$O_3$-based ceramics were investigated with $Dy_2$$O_3$content in the range of 0.0∼2.0 mol%. As $Dy_2$$O_3$content was increased, the average grain size was decreased in the range of 18.6∼4.7 $\mu\textrm{m}$ and the density of the ceramic was decreased in the range of 5.53∼4.34 g/㎤. While, the varistor voltage was increased in the range of 39.4∼436.6 V/mm and the nonlinear exponent was in the range of 4.5∼66.6 with increasing $Dy_2$$O_3$content. The addition of $Dy_2$$O_3$highly enhanced the nonlinear properties of varistors, compared with the varistor without $Dy_2$$O_3$. In particular, the varistor with $Dy_2$$O_3$ content of 0.5 mol% exhibited the highest nonlinearity, in which the nonlinear exponent is 66.6 and the leakage current is 1.2 $\mu\textrm{A}$. The donor concentration and the density of interface states were decreased in the range of $(4.19∼0.33) ${\times}$10^{18}$ //㎤ and $(5.38∼1.74) ${\times}$10^{12}$ $\textrm{cm}^2$, respectively, with increasing $Dy_2$$O_3$content. The minimum dissipation factor of 0.0302 was obtained from 0.5mol% $Dy_2$$O_3$.

Keywords

References

  1. L. M. Levinson and H. R. Philipp, Amer. Ceram. Soc. Bull., 65, 639 (1986)
  2. T. K. Gupta, J. Amer. Ceram. Soc, 73, 1817 (1990) https://doi.org/10.1111/j.1151-2916.1990.tb05232.x
  3. S. Shichimiya, M. Yamaguchi, N. Furuse, M. Kobayashi and S. Ishibe, IEEE Trans. Pow. Deliv. 13, 465 (1998) https://doi.org/10.1109/61.660916
  4. A. B. Alles and V. L. Burdick, J. Appl. Phys., 70, 6883 (1991) https://doi.org/10.1063/1.349812
  5. A. B. Alles, R. Puskas, G. Callahan and V. L. Burdick, J. Amer. Ceram. Soc., 76, 2098 (1993) https://doi.org/10.1111/j.1151-2916.1993.tb08339.x
  6. Y.-S. Lee, K.-S. Liao and T.-Y. Tseng, J. Amer. Ceram. Soc, 79, 2379 (1996) https://doi.org/10.1111/j.1151-2916.1996.tb08986.x
  7. C.-W. Nahm and C.-H. Park, J. Mater. Sci., 35, 3037 (2000) https://doi.org/10.1023/A:1004749214640
  8. C.-W. Nahm, Mater. Lett., 47, 182 (2001) https://doi.org/10.1016/S0167-577X(00)00262-7
  9. C.-W. Nahm, Y.-C. Jung, H.-S. Kim, J. of KIEEME (in Korean), 15, 244 (2002)
  10. C.-W. Nahm, H.-S. Kim, J. of KIEEME (in Korean), 15, 664 (2002)
  11. C.-W. Nahm, H.-S. Kim, J. of KIEEME (in Korean), 15, 776 (2002)
  12. C.-W. Nahm, J. Mater. Sci. Lett., 21, 201 (2002) https://doi.org/10.1023/A:1014259015381
  13. C.-W. Nahm and H.-S. Kim, Mater. Lett., 56, 379 (2002) https://doi.org/10.1016/S0167-577X(02)00490-1
  14. C.-W. Nahm and B.-C. Shin, Sci.: J. Mater. Sci.: Mater. Electron., 13, 111 (2002) https://doi.org/10.1023/A:1013610408895
  15. C.-W. Nahm and H.-S. Kim, Mater. Lett., 57, 1544 (2003) https://doi.org/10.1016/S0167-577X(02)01020-0
  16. C.-W. Nahm and B.-C. Shin, Mater. Lett., 57, 1322 (2003) https://doi.org/10.1016/S0167-577X(02)00980-1
  17. C.-W. Nahm, Mater. Lett., 57, 1317 (2003) https://doi.org/10.1016/S0167-577X(02)00979-5
  18. J. C. Wurst and J. A. Nelson, J. Amer. Ceram. Soc, 55, 109 (1972) https://doi.org/10.1111/j.1151-2916.1972.tb13390.x
  19. K. Mukae, K. Tsuda and I. Nagasawa, J. Appl. Phys., 50, 4475 (1979) https://doi.org/10.1063/1.326411
  20. L. Hozer, Semiconductor ceramics; grain boundary effects, Ellis Horwood, 21 (1994)
  21. L. M. Levinson and H. R. Philipp, Am. Ceram. Soc. Bull., 65, 639 (1986)
  22. G. D. Mahan, J. Appl. Phys., 54, 3825 (1983) https://doi.org/10.1063/1.332607
  23. C.-W. Nahm, Y.-C. Jung, Kor. J. Mat. Res., 7, 1033 (1997)