DOI QR코드

DOI QR Code

Anomalous Photoluminescence and Persistent Photoconductivity of AlxGal-xN/GaN Epilayers

AlxGal-xN/GaN 에피층의 비정상적인 광발광과 Persistent Photoconductivity 현상

  • Chung, S.J. (Semiconductor Physics Research Center, Chonbuk National University) ;
  • Jun, Y.K. (Department of liberal Art and Science, Howon University)
  • Published : 2003.10.01

Abstract

We have investigated $Al_{x}$ $Ga_{l-x}$ N/GaN epilayers (x = 0.08, 0.15) grown by metal organic vapor phase epitaxy on sapphire with photoluminescence(PL), and persistent photoconductivity(PPC) experiments. An anomalous S-shaped shift behavior of temperature dependencies of PL peak energy is observed for the x = 0.15 sample. In PPC measurement, showed that the dark current recovery time of $Al_{x}$$Ga_{l-x}$ N/GaN epilayers mainly depends on the Al content. These behaviors are usually attributed to the presence of carrier localization states. All these phenomena are explained based on the alloy compositional fluctuations in the $Al_{x}$ /$Ga_{l-x}$ N/ epilayers. The photocurrent quenching observed in PPC measurements for $Al_{x}$ $Ga_{l-x}$ N/ epilayers less than 0.2 $\mu\textrm{m}$ thickness indicates that the presence of metastable state in the bandgap of GaN layer, and that the excess holes in the valence band recombine with free electrons.

Keywords

References

  1. S. Nakamura, M. Senoh, and T. Mukai, Jpn. J. Appl. Phys. 30, L1708 (1991) https://doi.org/10.1143/JJAP.30.L1708
  2. I. Akasaki, H. Amano, Y. Koide, K. Hiramatsu, and N. Sawaki, J. Cryst. Growth 98, 209 (1989) https://doi.org/10.1016/0022-0248(89)90200-5
  3. S. Nakamura, T. Mukai, and M. Senoh, Appl. Phys. Lett. 64, 1687 (1994) https://doi.org/10.1063/1.111832
  4. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho. Appl. Phys. Lett. 72, 1687 (1998)
  5. T. Mukai, H. Narimatsu, and S. Nakamura, Jpn. J. Appl. Phys. 37, L479 (1998) https://doi.org/10.1143/JJAP.37.L479
  6. M. Khan, J. N. Kusnia, D. T. Olson, G. M. Van Hove, M.Blasingane, and L. F. Reitz, Appl. Phys. Lett. 60, 2917 (1992) https://doi.org/10.1063/1.106819
  7. D. Walker, X. Zhang, P. Kung, A. Saxler, S. Javadpour, J. Xu, and M. Razeghi, Appl. Phys. Lett. 68, 2100 (1996) https://doi.org/10.1063/1.115597
  8. K. Ito, K. Hiramatsu, H. Amano, and I. Akasaki, J. Cryst. Growth 104, 533 (1989) https://doi.org/10.1016/0022-0248(90)90156-F
  9. Y. P. Varshni, Physica. 34, 149 (1967) https://doi.org/10.1016/0031-8914(67)90062-6
  10. F. A. J. M. Driessen, G. J. Bauhuis, S. M. Olsthoorn and L. J. Giling, Phys. Rev. B 48, 7889(1993) https://doi.org/10.1103/PhysRevB.48.7889
  11. K. Yamashita, T. Kita, H. Nakayama and T. Nishino, Rev. B 55, 4411 (1997) https://doi.org/10.1103/PhysRevB.55.4411
  12. T. Yamamoto, M. Kasu, S. Noda and A. Sasaki, J. Appl. Phys. 68, 5318 (1990) https://doi.org/10.1063/1.347025
  13. A. Chomette, B. Deveaud, A. Regreny and G. Bastard, Phys. Rev. Lett. 57, 1464 (1986) https://doi.org/10.1103/PhysRevLett.57.1464
  14. H. W. Shim, R. J. Choi, S. M. Jeong, Le Van Vinh, C.-H. Hong, E.-K. Suh, H. J. Lee, Y.-W. Kim, and Y G. Hwang, Appl. Phys. Lett. 81, 3552 (2002) https://doi.org/10.1063/1.1519725
  15. Y.-H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, Appl. Phys. Lett. 73, 1370 (1998) https://doi.org/10.1063/1.122164
  16. T. Matsuoka, MRS Internet J. Nitride Semicond. Res. 1, 11 (1996) https://doi.org/10.1557/S1092578300001836
  17. Y. H. Cho, G. H. Gainer, J. B. Lam, J. J. Song, W. Yang, and W. Jhe, Phys. Rev. B61, 7203 (2000) https://doi.org/10.1103/PhysRevB.61.7203
  18. H. S. Kim, R. Mair, J. Lin, and H. Jiang, J. Korean, Phys. Soc. 37, 391 (2000)
  19. H. M. Chen, Y F. Chen, M. C. Lee, and M. S. Feng, Phys. Rev. B56, 6942 (1997) https://doi.org/10.1103/PhysRevB.56.6942
  20. S. J. Chung, M. S. Jeong, O. H. Cha, C.-H. Hong, E. -K. Suh, H. J. Lee, Y S. Kim, and B. H. Kim, Appl. Phys. Lett. 76, 1021 (2000) https://doi.org/10.1063/1.125944