DOI QR코드

DOI QR Code

Effect of Coiling Temperature and Alloying Elements on the Mechanical Properties and Precipitation Behavior in High Strength Hot Rolled Steel Sheets

고강도 열연강판의 기계적 성질과 석출거동에 미치는 권취온도와 합금원소의 영향

  • Kang, S.S. (School of Advanced Materials Engineering & RCAMD, Chonbuk National University) ;
  • Lee, O.Y. (School of Advanced Materials Engineering & RCAMD, Chonbuk National University) ;
  • Han, S.H. (Automotive Steels Research Center, POSCO Technical Research Laboratories) ;
  • Jin, K.G. (Automotive Steels Research Center, POSCO Technical Research Laboratories) ;
  • Seong, B.S. (Korea Atomic Energy Research Institute)
  • 강성수 (전북대학교 신소재공학부, 신소재개발연구센터) ;
  • 이오연 (전북대학교 신소재공학부, 신소재개발연구센터) ;
  • 한상호 (POSCO 기술연구소 자동차강재연구센터) ;
  • 진광근 (POSCO 기술연구소 자동차강재연구센터) ;
  • 성백석 (한국원자력연구소 하나로이용연구단)
  • Published : 2003.10.01

Abstract

The high strength low alloy(HSLA) steels microalloyed with Nb, Ti and V have been widely used as the automobile parts to decrease weight of vehicles. The effects of process conditions are investigated in the aspects of the precipitation behavior and the mechanical properties of HSLA steel microalloyed with Nb and Ti using TEM, SANS and mechanical testing. When Ti was added to a 0.07C-1.7Mn steel which was coiled at $500^{\circ}C$, the specimen revealed the property of higher tensile strength of 853.1 MPa and the stretch-flangeability of 60%. The stretch-flangeability was increased up to 97.8% for coiling temperature above $700^{\circ}C$. The precipitation hardening cannot be achieved in the 0.045C-1.65Mn steel which was the lower density of fine precipitates. However, the 0.07C-1.7Mn steels containing Nb and/or Ti which was coiled at X$/^{\circ}C$ have a high precipitates density of $2${\times}$10^{ 5}$/$\mu$㎥. The high strength of these steels was attributed to the precipitation hardening caused by a large volume froction of (Ti, Nb)C precipitates with a size below 5 nm in ferrite matrix.

Keywords

References

  1. K. Kunishige, CAMP-ISIJ, The Iron & Steel Inst. of Japan, 12, 428 (1999)
  2. NKK Patent, P2001-172745
  3. NKK Patent, PCT/JP2001/09469
  4. B. S. Seong, Y. S. Han, C. H. Lee, J. S. Lee, K. P. Hong, K. N. Park and H. J. Kim, Appl. Phys. A74, S201 (2002)
  5. J. T. Michalak and H. Hu, Met. Trans., 10A, 975 (1979)
  6. J. G. Speer and S. S. Hansen, Met. Trans., 20A, 25 (1989)
  7. I. Kozasu, C. Ouchi, T. Sambei and T. Okita, Micro-alloying 75' 72 (1977)
  8. W.Roberts, H. Lidefelt and A. Sandberg, The Metals Society, 38 (1980)
  9. M. Charleux, W. J. Poole, M. Militzer and Deschamps, Met. and Mater. Trans., 32A, 1635 (2001)
  10. O. Kawano and J. Wakita, CAMP-ISIJ, The Iron & steel Inst, of Japan, 9, 1337 (1996)
  11. M. Morita, CAMP-ISIJ, The Iron and steel Inst, of Japan, 5, 1863 (1992)
  12. Y. R. Cho, J. H. Chung, H. H. Koo and I. B. Kim, Korean Journal of Mater. Research, 9, 1252 (1999)
  13. M. Militzer, E. B. Hawbolt and T. R. Meadowcroft, Met. and Mater. Trans., 31A, 1247 (2000)
  14. L. Mayer, F. Heisterkamp and W. Mueschenborn, Microalloying 75, 153 (1997)
  15. M. J. Crooks, A. J. Garratt-Reed, J. B. Vander Sande and W. S. Owen, Met. Trans. 12A, 1999 (1981)
  16. E. K. Stroms and N. K. Krikorian, J. Phys. Chem, 64, 1471 (1960) https://doi.org/10.1021/j100839a029
  17. W. B. Lee, K. B. Kang and C. G. Park, J. of the Korean Inst. of Met. & Mater. 34, 688 (1996)
  18. I. M. Lifshitz and V. V. Slyozov, J. Phys. Chem. Solids, 19, 35 (1961) https://doi.org/10.1016/0022-3697(61)90054-3
  19. U. Keiderling, A. Wiedenmann, V. Srdic, M. Winterer and H. Hahn, J. Appl. Cryst. 33, 483 (2000) https://doi.org/10.1107/S0021889899014727