DOI QR코드

DOI QR Code

Microstructural Changes during Activation Process of Isotopic Carbon Fibers using CO2 Gas(I)-XRD Study

이산화탄소를 이용한 등방성 탄소섬유의 활성화과정 중 발생하는 구조변화(I)-XRD를 이용한 분석

  • Roh, J.S. (School of Advanced Materials and Systems Engineering, Kumoh National University of Technology)
  • 노재승 (금오공과대학교 신소재공학부)
  • Published : 2003.11.01

Abstract

The structural parameters such as Lc, La and d of $CO_2$activated isotropic carbon fibers(ACFs) were obtained from XRD in order to understand a development mechanism of micropores. And the structural parameters were compared with specific surface area(SSA) data. The $d_{002}$, Lc, and La of the original fiber were measured to be 4.04$\AA$, 6.2$\AA$, and 23.6$\AA$, respectively. Carbonization of outer-parts and oxidization of inner-parts of the original fibers were far from completeness. It was observed that the structural changes of the ACFs during activation take place severely, therefore the carbonization and the oxidization of the fibers take place simultaneous with pore developments. The $d_{002}$ of the ACFs was increased to be 2.80$\AA$, and the La of the ACFs was decreased to be 17.0$\AA$ by activation. It was shown that the pores are developed continuously from the outer-parts to the inner-parts of the fibers, therefore the SSA increases as a result of the development of pores fully to the inner-parts of the fiber when the burn-off degree was over :39%. It seems that the (002) planes of crystallites contribute to the micropore wall related to the super high SSA.SSA.

Keywords

References

  1. S. J. Gregg and K. S. W. Sing, 'Adsorption, Surface Area and Porosity', Academic Press, London (1982)
  2. P. J. M. Carrot and K. S. W. Sing, 'Characterization of Porous Solid', 77, Ed. by K. K. Unger, J. Rouquerol, K. S. W. Sing and H. Kral, Elsevier Sci. Publ., Amsterdam (1988)
  3. M. C. Mittelmeijer-Hazeleger and J. M. Martin-Martinez, Carbon, 30, 695 (1992) https://doi.org/10.1016/0008-6223(92)90188-3
  4. H. Marsh, Carbon, 25, 49 (1987) https://doi.org/10.1016/0008-6223(87)90039-X
  5. R. M. Bustin, J. N. Rouzaud and J. V. Ross, Carbon, 33, 679 (1995) https://doi.org/10.1016/0008-6223(94)00155-S
  6. M. Endo, C. Kim, T. Karaki, T. Kasai, M. J. Matthews, S. D. M. Brown, M. S. Dresselhaus, T. Tamaki and Y. Nishimura, Carbon, 36, 1633 (1998) https://doi.org/10.1016/S0008-6223(98)00157-2
  7. M. A. Montes-Moran and R. J. Young, Carbon, 40, 845 (2002) https://doi.org/10.1016/S0008-6223(01)00212-3
  8. S. H. Yoon, Y. Korai, I. Mochida, K. Yokogawa, S. Fukuyama and M. Yoshimura, Carbon, 34, 83 (1996) https://doi.org/10.1016/0008-6223(95)00138-7
  9. M. Endo, Journal of Materials Science, 23, 598 (1988) https://doi.org/10.1007/BF01174692
  10. A. Oberlin, M. Villey and A. Combaz, Carbon, 18, 347 (1980) https://doi.org/10.1016/0008-6223(80)90006-8
  11. B. E. Warren, The Physical Review, 59, 693 (1941) https://doi.org/10.1103/PhysRev.59.693
  12. T. F. Yen, J. G. Erdman and S. S. Pollack, Analytical Chemistry, 33, 1587 (1961) https://doi.org/10.1021/ac60179a039
  13. F. R. Ludwig Schoening, Fuel, 62, 1315 (1983) https://doi.org/10.1016/S0016-2361(83)80016-7
  14. D. L. Wertz and J. L. Quin, Energy & Fuels, 12, 697 (1998) https://doi.org/10.1021/ef970199+
  15. V. V. Kovalevski, P. R. Buseck and J. M. Cowley, Carbon, 39, 243 (2001) https://doi.org/10.1016/S0008-6223(00)00120-2
  16. M. Shioya, T. Ojima and J. Yamashita, Carbon, 39, 1869 (2001) https://doi.org/10.1016/S0008-6223(00)00312-2
  17. H. S. Shim and R. Hurt, Carbon 97, July 18-23, 438 ( 1997)
  18. N. Yoshizawa, Y. Yamada and M, Shiraishi, Journal of Materials science, 33, 199 (1998) https://doi.org/10.1023/A:1004322402779
  19. F. R. Ludwig Schoening, Fuel, 61, 695 (1982) https://doi.org/10.1016/0016-2361(82)90241-1
  20. P. Ehrburger, N. Pusset and P. Dziedzinlo, Carbon, 30, 1105 (1992) https://doi.org/10.1016/0008-6223(92)90142-J
  21. J. J. Freeman, F. G. R. Gimblett and K. S. W. Sing, Carbon, 27, 85 (1989) https://doi.org/10.1016/0008-6223(89)90160-7
  22. T. Suzuki and K. Kaneko, J. Colloid Interface Sci., 138, 590 (1990) https://doi.org/10.1016/0021-9797(90)90243-H
  23. K. Kaneko, C. Ishii, M. Ruike and H. Kuwabara, Carbon, 30, 1075 (1992) https://doi.org/10.1016/0008-6223(92)90139-N
  24. F. Derbyshire, R. Andrews, D. Jacques, M. Jagtoyen, G. Kimber and T. Rantell, Fuel, 80, 345 (2001) https://doi.org/10.1016/S0016-2361(00)00099-5
  25. N. Yoshizawa, K. Maruyama, Y. Yamada and M. Zielinska-Blajet, Fuel, 79, 1461 (2000) https://doi.org/10.1016/S0016-2361(00)00011-9
  26. Z. Ryu, H. Rong, J. Zheng, M. Wang and B. Zhang, Carbon, 40, 1131 (2002) https://doi.org/10.1016/S0008-6223(01)00261-5
  27. Q. Chang, T. Liu and X. Cal, Carbon 95, July 16-21, 514 (1995)
  28. T. Mays, J. Howell, L. King, B. McEnaney and D. Edie, Carbon 95, July 16-21, 510 (1995)
  29. J. R. Fryer, Carbon, 19, 431 (1981) https://doi.org/10.1016/0008-6223(81)90026-9
  30. M. Huttepain and A. Oberlin, Carbon, 28, 103 (1990) https://doi.org/10.1016/0008-6223(90)90100-D
  31. L. I. Schukin, M. V. Komievich, R. S. Vartapetjan and S, I. Beznisko, Carbon, 40, 2021 (2002) https://doi.org/10.1016/S0008-6223(02)00153-7
  32. K. Kamegawa, K. Nishikubo and H. Yoshida, Carbon, 36, 433 (1998) https://doi.org/10.1016/S0008-6223(97)00227-3
  33. D. Gondy and P. Ehrburger, Carbon, 35, 1745 (1997) https://doi.org/10.1016/S0008-6223(97)00133-4
  34. X. Z. Sha, T. Kyotani and A. Tomita, Fuel, 69, 1564 (1990) https://doi.org/10.1016/0016-2361(90)90208-8
  35. J. S. Roh and D. S. Suhr, Korean J. Materials Research, 7, 121 (1997)
  36. J. S. Roh and D. S. Suhr, Korean J. Materials Research, 8, 114 (1998)
  37. J. S. Roh and D. S. Suhr, Korean J. Materials Research, 8, 120 (1998)
  38. J. Biscoe and B. E. Warren, Journal of Applied Physics, 13, 364 (1942) https://doi.org/10.1063/1.1714879
  39. A. K. Kercher and D. C. Nagle, Carbon, 41, 15 (2003) https://doi.org/10.1016/S0008-6223(02)00261-0
  40. S. Ergun and V. H. Tiensuu, Fuel, 38, 64 (1959)
  41. A. Sharma, T. Kyotani and A. Tomita, Fuel, 78, 1203 (1999) https://doi.org/10.1016/S0016-2361(99)00046-0

Cited by

  1. Preparation and Characterization of Coaltar Pitch-based Activated Carbon Fibers(I) -Effect of Steam Activation Temperature on Textural Properties of Activated Carbon Fibers- vol.51, pp.4, 2014, https://doi.org/10.12772/TSE.2014.51.174
  2. Preparation and Characterization of Coal Tar Pitch-based Activated Carbon Fibers. II. Cu(II) and Ni(II) Adsorption in Activated Carbon Fibers during Physical Activation vol.52, pp.2, 2015, https://doi.org/10.12772/TSE.2015.52.097