DOI QR코드

DOI QR Code

CH3OH/H2O 가스의 기상활성법을 이용한 다이아몬드 박막성장 과정에서의 OES분석

OES Analysis for Diamond Film Growth by Vapor Activation Method Using CH3OH/H2O Gas

  • 이권재 (숭실대학교 물리학과) ;
  • 고재귀 (숭실대학교 물리학과) ;
  • 신재수 (대전대학교 이과대학 전자재료과학과)
  • Lee, Kwon-Jai (Department of Physics, Soongsil University) ;
  • Koh, Jae-Gui (Department of Physics, Soongsil University) ;
  • Shin, Jae-Soo (Department of Electronic Materials Science, Daejoen University)
  • 발행 : 2003.01.01

초록

The intensity is measured as functions of both distance from filament to substrate and $CH_3$OH/($CH_3$OH+$H_2$O) ratio by OES(Optical Emission Spectroscopy) to investigate the effects of activation species such as $H_{\alpha}$, $H_{\beta}$, H$\Upsilon\;C_3$, CH on diamond film growth.$ H_{\alpha}$ increases as $CH_3$OH composition decreases, while CH increases as $CH_3$OH composition increases. The intensity of $H_{\alpha}$ decreases as the distance increases and that of CH increases as the distance increases. The intensities of other activation species of $H_{\beta}$, H$\Upsilon\;C_3$, do not vary as a function of measured position distance. It varies randomly. It means that various parameters for depositing diamond thin film can be explained by the intensity(density) change of activation species, as a function of the distance of the filament.

키워드

참고문헌

  1. Liao Y, Chang C, Li CH, Ye ZY, Wang GZ and Fang RC, Thin Solid Films, 368, 303 (2000) https://doi.org/10.1016/S0040-6090(00)00788-4
  2. Y. Muranaka, H. Yamashita, K. Sato and H. Miyadera, J. Appl. Phys., 67, 6247 (1990) https://doi.org/10.1063/1.345191
  3. S. Matumoto, J. Mater. Sci. Lett., 4, 600 (1985) https://doi.org/10.1007/BF00720043
  4. S. Matsumoto, M. Hino, Y. Moriyoshi, T. Nagashima and Tsutsmui, U. S. Patent 4767608 (1988)
  5. P. Badziagm, W. S. Verwoerd, W. P. Ellis and N. R. Greiner, Nature, 343, 244 (1990) https://doi.org/10.1038/343244a0
  6. N. M. Hwang, J. H. Hahn and D. Y. Yoon, J. Cryst. Growth, 160, 87 (1996) https://doi.org/10.1016/0022-0248(95)00548-X
  7. N. M. Hwang, H. W. Bahng and D. Y. Yoon, Diamond and Relat. Mater., 1, 191 (1992) https://doi.org/10.1016/0925-9635(92)90023-H
  8. L. R. Martin and M. W. Hill, Appl. Phys. Lett., 55, 2248 (1989) https://doi.org/10.1063/1.102072
  9. E. H. Wahl, T. G. Owano, C. H. Kruger, P. Zalicki, Y. Ma and R. N. Zare, Diamond and Relat. Mater., 5, 373 (1996) https://doi.org/10.1016/0925-9635(95)00359-2
  10. L. Schafer, C. P. Klages, U. Meier and K. Kohse-Hoinhaus, Appl. Phys. Lett., 58, 571 (1991) https://doi.org/10.1063/1.104590
  11. F. G. Celii and J. E. Butler, Appl. Phys. Lett., 54, 1031 (1989) https://doi.org/10.1063/1.100789
  12. R. S. Tsang, C. A. Rego, P. W. May, M. N. R. Ashfold and K. N. Rosser, Diamond and Relat. Mater., 6, 247 (1997) https://doi.org/10.1016/S0925-9635(96)00647-4
  13. S. J. Harris, A. M. Weiner and T. A. Perry, Appl. Phys. Lett., 53, 1605 (1988) https://doi.org/10.1063/1.99925
  14. T. Kawato and K. Kanda, Jpn. J. Appl. Phys., 26, 1429 (1987) https://doi.org/10.1143/JJAP.26.1429
  15. M. Frenklach and K. E. Spear, J. Mater. Res., 3, 133 (1988) https://doi.org/10.1557/JMR.1988.0133
  16. G. Balestrino, M. Marinell, E. Milani, A. Paoletti, P. Paroli, I. Printer and A.Tebano, Diamond and Relat. Mater., 2, 389 (1993) https://doi.org/10.1016/0925-9635(93)90088-J
  17. H. Barankova, L. Bardos and S. Bergr, Diamond and Relat. Mater., 2, 347 (1993) https://doi.org/10.1016/0925-9635(93)90080-L
  18. R. S. Tsang, P. W. May and M. N. R. Ashfold, Diamond and Relat. Mater., 8, 242 (1999) https://doi.org/10.1016/S0925-9635(98)00257-X
  19. Y. Matsui and M. Sahara, Jpn. J. Appl. Phys. 28, 1023 (1989) https://doi.org/10.1143/JJAP.28.1023
  20. K. J. Lee and J. G. Koh, Koh. J. Mater. Res., 11, 1024 (2001)
  21. M. Flenklach, J. Appl. Phys., 65, 5142 (1989) https://doi.org/10.1063/1.343193
  22. K. C. Pandey, Phys. Rev., B25, 4338 (1992)