DOI QR코드

DOI QR Code

소오스/드레인 영역의 도펀트 양의 증가에 따른 코발트실리사이드의 물성변화

Influence of Dose on the Property of Cobalt Silicides in Source/Drain Area

  • 정성희 (서울시립대학교 신소재공학과) ;
  • 송오성 (서울시립대학교 신소재공학과) ;
  • 김민성 (동명정보대학교 정보통신공학과)
  • Cheong, Seong-Hwee (Department of Materials Science and Engineering, The University of Seoul) ;
  • Song, Oh-Sung (Department of Materials Science and Engineering, The University of Seoul) ;
  • Kim, Min-Sung (Department of Infornation and Communications Engineering, School of Information Engineering)
  • 발행 : 2003.01.01

초록

As and BF$_2$dopants are implanted for the formation of source/drain with dose of 1${\times}$10$^{15}$ ions/$\textrm{cm}^2$∼5${\times}$10$^{15}$ ions/$\textrm{cm}^2$ then formed cobalt disilicide with Co/Ti deposition and doubly rapid thermal annealing. Appropriate ion implantation and cobalt salicide process are employed to meet the sub-0.13 $\mu\textrm{m}$ CMOS devices. We investigated the process results of sheet resistance, dopant redistribution, and surface-interface microstructure with a four-point probe, a secondary ion mass spectroscope(SIMS), a scanning probe microscope (SPM), and a cross sectional transmission electron microscope(TEM), respectively. Sheet resistance increased to 8%∼12% as dose increased in $CoSi_2$$n^{+}$ and $CoSi_2$$p^{V}$ , while sheet resistance uniformity showed very little variation. SIMS depth profiling revealed that the diffusion of As and B was enhanced as dose increased in $CoSi_2$$n^{+}$ and $CoSi_2$$p^{+}$ . The surface roughness of root mean square(RMS) values measured by a SPM decreased as dose increased in $CoSi_2$$n^{+}$ , while little variation was observed in $CoSi_2$$p^{+}$ . Cross sectional TEM images showed that the spikes of 30 nm∼50 nm-depth were formed at the interfaces of $CoSi_2$$n^{+}$ / and $CoSi_2$/$p^{+}$, which indicate the possible leakage current source. Our result implied that Co/Ti cobalt salicide was compatible with high dose sub-0.13$\mu\textrm{m}$ process.

키워드

참고문헌

  1. J. Y. Dai, Z. R. Guo, S. F. Tee, C. L. Tay, E. Er and S. Redkar, Appl. Phys. Lett., 78, 3091 (2001) https://doi.org/10.1063/1.1372621
  2. J. Prokop, C. E. Zybill and S. Veprek, Thin Solid Films, 359, 39 (2000) https://doi.org/10.1016/S0040-6090(99)00654-9
  3. C. Detavemier, R. L. Van Meirhaeghe and F. Cardon, J. Appl. Phys., 88, 133 (2000) https://doi.org/10.1063/1.373633
  4. S. L. Hsia, T. Y. Tan, P. Smith and G. E. McGuire, J. Appl. Phys., 70, 1308 (1991) https://doi.org/10.1063/1.349713
  5. J. B. Lasky, J. S. Nakos, O. J. Cain and P. J. Geiss, IEEE Trans. Electron Devices, 38, 262 (1991) https://doi.org/10.1109/16.69904
  6. H. S. Kim, D. H. Ko, D. L. Bae, K. Fujihara and H. K. Kang, IEEE Electron Device Lett., 20, 86 (1999) https://doi.org/10.1109/55.740660
  7. J. Chen, J. P. Colinge, D. Flandre, R. Gillon, J. P. Raskin and D. Vanhoenacker, J. Electrochem. Soc., 144, 2437 (1997) https://doi.org/10.1149/1.1837833
  8. R. T. Tung, Applied Surface Science, 117/118, 268 (1997) https://doi.org/10.1016/S0169-4332(97)80092-X
  9. H. Zhang, J. Poole, R. Eller and M. Keefe, J. Vac. Sci. Technol. A, 17, 1904 (1999) https://doi.org/10.1116/1.581702
  10. O. S. Song and Y. S. Ahn, J. Kor. Inst. Surf. Eng., 32, 389 (1999)
  11. H. C. Cheng, W. K. Lai and H. W. Liu, J. Electrochem. Soc., 145, 3590 (1998) https://doi.org/10.1149/1.1838847
  12. P. Gas, O. Thomas and F. M. d'Heurle, Properties of Metal Silicides, p. 298, 14, ed. K. Maex and M.V.Rossum, INSPEC, London UK, (1995)
  13. D. Mangelinck, J. Cardenas, F. M. d'Heurle, B. G. Svensson and P. Gas, J. Appl. Phys., 86, 4908 (1999) https://doi.org/10.1063/1.371459
  14. A. Lauwers, Q. F. Wang, B. Deweerdt and K. Maex, Applied Surface Science, 91, 12 (1995) https://doi.org/10.1016/0169-4332(95)00087-9
  15. M. L. A. Dass, D. B. Fraser and C. S. Wei, Appl. Phys. Lett., 58, 1308 (1991) https://doi.org/10.1063/1.104345
  16. T. Sukegawa, H. Tomita, A. Fushida, K. Goto, S. Komiya and T. Nakamura, Jpn. J. Appl. Phys., 36, 6244 (1997) https://doi.org/10.1143/JJAP.36.6244