DOI QR코드

DOI QR Code

Structural and Magnetic Properties of the Substituted YIG System

치환된 YIG계의 구조적 및 자기적 특성

  • 최승한 (경산대학교 자연과학부 전자물리학) ;
  • 이영배 (동해대학교 교양학부)
  • Published : 2003.01.01

Abstract

The substituted yttrium iron garnet systems $Y_{ 3-x}$/Gd$_{x}$X$0.2_{0.2}$ $Fe_{4.8}$ $O _{12}$ (x = 0.2, 0.4, 0.6) have been investigated by means of X-ray diffraction, Mossbauer spectroscopy and SQUID. The X-ray diffraction patterns at room temperature confirm the samples to have a single phase of the garnet structure over the whole composition range. The lattice constants of all the samples linearly change with increasing x due to the size of substituted ions in the dodecahedral sites. $Y_{3-x}$ $Gd_{x}$ X$Fe_{4.8}$ $In_{0.2}$ $O_{12}$ system which $Y_{3-x}$ ions are substituted with Gd$^{ 3+}$ ions, the Mossbauer spectrum consists of three Zeeman sextets at room temperature, one due to the $Fe^{3+}$ ions on the octahedral(a-) sites and the others due to the $Fe^{3+}$ ions on the tetrahedral(d-, d'-) sites, respectively. From the hysteresis loop measured by means of SQUID over the whole composition range, the saturation magnetization $M_{s}$ and magnetic moments $\mu_{ B}$ per unit cell have been obtained. The increment of Gd-ion content causes $M_{s}$ and $\mu_{B}$ decrease while the increment of In-ion content does not.

Keywords

References

  1. F. Bertaut and F. Forrat, Compt. Rend. 242, 382 (1956)
  2. S. Geller and M. A. Gilleo, Act Cryst. 10, 239 (1957) https://doi.org/10.1107/S0365110X57000729
  3. S. Geller, Z. krist. 125, 1 (1967)
  4. D. C. Leo D. A. Lepore and J. W. Nielsen, J. Appl. Phys. 37, 1083 (1966) https://doi.org/10.1063/1.1708570
  5. H. M. Cohen and R. A. Chegwidden, J. Appl. Phys. 37, 1081 (1966) https://doi.org/10.1063/1.1708343
  6. R. Bauminger, S. G. Cohen, A. Marinov and S. Ofer, Phys. Rev. 122, 743 (1961) https://doi.org/10.1103/PhysRev.122.743
  7. S. Geller and M. A. Gilleo, Phys. Rev. 110, 73 (1958) https://doi.org/10.1103/PhysRev.110.73
  8. J. M. D. Coey, R. D. Orewitt and C. T. Prewitt, Acta. Cryst. B25 (1969)
  9. J. K. Srivastava, K. Le Dang and P. Veillet, J. Phys. C : Solid State Phys. 19, 599 (1986) https://doi.org/10.1088/0022-3719/19/4/020
  10. P. A. Dickof, P. J. Schurer and A. H. Morrish, Phys. Rev. B22, 115 (1980) https://doi.org/10.1103/PhysRevB.22.115
  11. G. Dege, J. Suwalski, E. Wieserand and R. Kabish, Phys. Status Solidi (a) 65, 669 (1987) https://doi.org/10.1002/pssa.2210650233
  12. A. Hauet, J. Teillet, B. Hannoyer and M. Lenglet, Phys. Status Solidi (a) 103, 257 (1987) https://doi.org/10.1002/pssa.2211030129
  13. I. S. Jacob, J. Phys. Chem. Solids, 15, 54 (1964) https://doi.org/10.1016/0022-3697(60)90100-1
  14. J. Chappert and R. B. Frankel, Phs. Rev. Lett. 19, 570 (1967) https://doi.org/10.1103/PhysRevLett.19.570
  15. G. O. White, C. A. Edmonson, R. B. Goldfarb and C. E. Patton, J. Appl. Phys. 50, 2381 (1979) https://doi.org/10.1063/1.327011
  16. C. E. Patton and Y. H. Liu, J. Phys. C : Solid State Phys. 16, 5995 (1983) https://doi.org/10.1088/0022-3719/16/31/014
  17. E. De Grave, A. Gavaert, D. Chamvaere and G. Robbrecht, Physica B96. 103 (1979) https://doi.org/10.1016/0378-4363(79)90104-9
  18. A. H. Morrish and P. E. Clark, Phys. Rev. B11, 278 (1975) https://doi.org/10.1103/PhysRevB.11.278
  19. A. H. Morrish and P. J. Schurer, Physica B 86-8, 921 (1977) https://doi.org/10.1016/0378-4363(77)90742-2
  20. A. F. Wells, Structural Inorganic Chemistry, 5th Ed., Clarendon Press, Oxford (1984)
  21. J. L. Dormann and M. Noges, J. Phys. C : Condense. Matter, 2, 1223 (1990) https://doi.org/10.1088/0953-8984/2/5/014