DOI QR코드

DOI QR Code

Growth and Characteristics of IrO2 Thin Films for Application as Bottom Electrodes of Ferroelectric Capacitors

Ferroelectric 캐패시터의 하부전극에의 응용을 위한 IrO2 박막 증착 및 특성분석

  • Hur, Jae-Sung (Department of Materials Science & Engineering, Korea University) ;
  • Choi, Hoon-Sang (Department of Materials Science & Engineering, Korea University) ;
  • Kim, Do-Young (Department of Materials Science & Engineering, Korea University) ;
  • Jang, Yu-Min (Department of Materials Science & Engineering, Korea University) ;
  • Lee, Jang-Hyeok (Department of Materials Science & Engineering, Korea University) ;
  • Choi, In-Hoon (Department of Materials Science & Engineering, Korea University)
  • 허재성 (고려대학교 재료공학과) ;
  • 최훈상 (고려대학교 재료공학과) ;
  • 김도영 (고려대학교 재료공학과) ;
  • 장유민 (고려대학교 재료공학과) ;
  • 이장혁 (고려대학교 재료공학과) ;
  • 최인훈 (고려대학교 재료공학과)
  • Published : 2003.02.01

Abstract

In this work, $IrO_2$thin films as bottom electrode of ferroelectric capacitors were deposited and characterized. The $IrO_2$films deposited in the conditions of 25, 40 and 50% oxygen ambient by sputtering method were annealed at 600, 700 and $800^{\circ}C$, respectively. It was found that the crystallinity and the surface morphology of $IrO_2$films affected the surface properties and electrical properties of SBT thin films prepared by the MOD method. With increasing temperature, the crystallinity and the roughness of $IrO_2$films were also increasing. This increasing of roughness degraded the surface properties and electrical properties of SBT films. We found an optimum condition of $IrO_2$films as bottom electrode for ferroelectric capacitor at 50% oxygen ambient and $600^{\circ}C$ annealing temperature. Electrical characterizations were performed by using$ IrO_2$bottom electrodes grown at an optimum conditions. The remanent polarization ($P_{r}$) of the Pt/SBT/$IrO_2$/$SiO_2$/Si structure was 2.75 $\mu$C/$\textrm{cm}^2$ at an applied voltage of 3 V. The leakage current density was $1.06${\times}$10^{-3}$ A/$\textrm{cm}^2$ at an applied voltage of 3 V.

Keywords

References

  1. O. Auciello, Integrated Ferroelectrics, 15, 211 (1997) https://doi.org/10.1080/10584589708015712
  2. H. M. Duiker, P. D. Cuchiaro and L. K. McMillan, Jpn. J. Appl. Phys., 68, 5783 (1990) https://doi.org/10.1063/1.346948
  3. T. Mihara, H. Watanabe and C. A. Paz de Araujo, Jpn. J. Appl. Phys., 32, 4168 (1993) https://doi.org/10.1143/JJAP.32.4168
  4. C. A. Paz de Araujo, J. D. Cuchiaro, L. D. McMillan, M. C. Scott and J. J. Scott, Nature, 43, 627 (1995) https://doi.org/10.1038/374627a0
  5. T. Mihara, H. Yoshimori, H. Watanabe and C. A. Paz de Araujo, Jpn. J. Appl. Phys., 34, 5233 (1995) https://doi.org/10.1143/JJAP.34.5233
  6. ?T. Mihara, H. Yoshimori, H. Watanabe and C. A. Araujo, Jpn. J. Appl. Phys., 34, N.9B, 5233 (1995) https://doi.org/10.1143/JJAP.34.5233
  7. K. Takemura, S. Yamamichi, P.-Y. Lesaicherre, K. Tokashiki, H. Miyamoto, H. Ono, Y. Miyasaka and M. Yoshida, Jpn. J. Appl. Phys., 34, N.9B, 5224 (1995) https://doi.org/10.1143/JJAP.34.5224
  8. P. D. Hren, Proceedings of the 3rd ISIF, 612 (1991)
  9. T.-S. Chen, V. Balu, B. Jiang, S. Kuah, J. C. Lee, P. Chu, R. E. Jones, P. Zurcher. D. J. Taylor and S. Gillespie, Interated Ferroelectics 16, 191 (1997) https://doi.org/10.1080/10584589708013041
  10. H.-S. Lee, W.-S.Um, K.-T. Hwang, H.-G. Shin, Y.-B. Kim and K.-H. Auh, J. Vac. Sci. Technol. A. 17, N.5, (1999)
  11. H. -J. Yoo, S. -H. Kim, B. -G. Ypp, Future Memory : FRAM, Sigmapress pp. 64-65 (2000)