DOI QR코드

DOI QR Code

Effect of Ti Interlayer Thickness on Epitaxial Growth of Cobalt Silicides

중간층 Ti 두께에 따른 CoSi2의 에피텍시 성장

  • Choeng, Seong-Hwee (Department of Materials Science and Engineering, The University of Seoul) ;
  • Song, Oh-Sung (Department of Materials Science and Engineering, The University of Seoul)
  • 정성희 (서울시립대학교 신소재공학과) ;
  • 송오성 (서울시립대학교 신소재공학과)
  • Published : 2003.02.01

Abstract

Co/Ti bilayer structure in Co salicide process helps to the improvement of device speed by lowering contact resistance due to the epitaxial growth of $CoSi_2$layers. We investigated the epitaxial growth and interfacial mass transport of $CoSi_2$layers formed from $150 \AA$-Co/Ti structure with two step rapid thermal annealing (RTA). The thicknesses of Ti layers were varied from 20 $\AA$ to 100 $\AA$. After we confirmed the appropriate deposition of Ti film even below $100\AA$-thick, we investigated the cross sectional microstructure, surface roughness, eptiaxial growth, and mass transportation of$ CoSi_2$films formed from various Ti thickness with a cross sectional transmission electron microscopy XTEM), scanning probe microscopy (SPM), X-ray diffractometery (XRD), and Auger electron depth profiling, respectively. We found that all Ti interlayer led to$ CoSi_2$epitaxial growth, while $20 \AA$-thick Ti caused imperfect epitaxy. Ti interlayer also caused Co-Ti-Si compounds on top of $CoSi_2$, which were very hard to remove selectively. Our result implied that we need to employ appropriate Ti thickness to enhance the epitaxial growth as well as to lessen Co-Ti-Si compound formation.

Keywords

References

  1. ?J. S. Byun, D. H. Kim and W. S. Kim, J. Appl. Phys., 78, 1725 (1995) https://doi.org/10.1063/1.360201
  2. J. Y. Dai, Z. R. Guo, S. F. Tee, C. L. Tay, E. Er and S. Redkar, Appl. Phys. Lett., 78, 3091 (2001) https://doi.org/10.1063/1.1372621
  3. J. Prokop, C. E. Zybill, and S. Veprek, Thin Solid Films, 359, 39 (2000) https://doi.org/10.1016/S0040-6090(99)00654-9
  4. C. Detavernier, R. L. V. Meirhaeghe and F. Cardon, J. Appl. Phys., 88, 133 (2000) https://doi.org/10.1063/1.373633
  5. K. Maex, A. Lauwers, P. Besser, E. Kondoh, M. Potter and A. Steegen, IEEE Trans. Electron Devices, 46, 1545 (1999) https://doi.org/10.1109/16.772509
  6. R. T. Tung, Applied Surface Science, 117/118, 268 (1997) https://doi.org/10.1016/S0169-4332(97)80092-X
  7. H. Zhang, J. Poole, R. Eller and M. Keefe, J. Vac. Sci. Technol. A, 17, 1904 (1999) https://doi.org/10.1116/1.581702
  8. J. Lutze, G. Scott and M. Manley, IEEE Electron Device Lett., 21, 155 (2000) https://doi.org/10.1109/55.830966
  9. H. Fang, M. C. Oztu, E. G. Seebauer and D. E. Batchelor, J. Electrochem. Soc., 146, 4240 (1999) https://doi.org/10.1149/1.1392621
  10. S. L. Hsia, T. Y. Tan, P. Smith and G. E. McGuire, J. Appl. Phys., 70, 1308 (1991) https://doi.org/10.1063/1.349713
  11. J. B. Lasky, J. S. Nakos, O. J. Cain and P. J. Geizz, IEEE Trans. Electron. Devices, 38, 262 (1991) https://doi.org/10.1109/16.69904
  12. R. T. Tung, MRS Symp. Proc., 427, 481 (1996) https://doi.org/10.1557/PROC-427-481
  13. M. L. A. Dass, D. B. Fraser and C. S. Wei, Appl. Phys. Lett., 58, 1308 (1991) https://doi.org/10.1063/1.104345
  14. G. B. Kim and H. K. Baik, Appl. Phys. Lett., 69, 3498 (1996) https://doi.org/10.1063/1.117224
  15. D. P. Adams, S. M. Yalisove and D. J. Eaglesham, J. Appl. Phys., 76, 5190 (1994) https://doi.org/10.1063/1.357237
  16. T. S. Kang, J. H. Je, G. B. Kim, H. K. Baik and S. Lee, J. Vac. Sci. Technol. B, 18, 1953 (2000) https://doi.org/10.1116/1.1305275
  17. T. S. Kang and J. H. Je, Appl. Phys. Lett., 80, 1361 (2002) https://doi.org/10.1063/1.1455149