DOI QR코드

DOI QR Code

Effects of Post-deposition Annealing on the Copper Films Electrodeposited on the ECR Plasma Cleaned Copper Seed Layer

ECR plasma로 전처리된 Cu seed층 위에 전해도금 된 Cu 막에 대한 Annealing의 효과

  • Lee, Han-seung (Department of Materials Science and Engineering, Inha University) ;
  • Kwon, Duk-ryel (Department of Materials Science and Engineering, Inha University) ;
  • Park, Hyun-ah (Department of Materials Science and Engineering, Inha University) ;
  • Lee, Chong-mu (Department of Materials Science and Engineering, Inha University)
  • 이한승 (인하대학교 공과대학 재료공학부) ;
  • 권덕렬 (인하대학교 공과대학 재료공학부) ;
  • 박현아 (인하대학교 공과대학 재료공학부) ;
  • 이종무 (인하대학교 공과대학 재료공학부)
  • Published : 2003.03.01

Abstract

Thin copper films were grown by electrodeposition on copper seed layers which were grown by sputtering of an ultra-pure copper target on tantalum nitride-coated silicon wafers and subsequently, cleaned in ECR plasma. The copper films were then subjected to ⅰ) vacuum annealing, ⅱ) rapid thermal annealing (RTA) and ⅲ) rapid thermal nitriding (RTN) at various temperatures over different periods of time. XRD, SEM, AFM and resistivity measurements were done to ascertain the optimum heat treatment condition for obtaining film with minimum resistivity, predominantly (111)-oriented and smoother surface morphology. The as-deposited film has a resistivity of ∼6.3 $\mu$$\Omega$-cm and a relatively small intensity ratio of (111) and (200) peaks. With heat treatment, the resistivity decreases and the (111) peak becomes dominant, along with improved smoothness of the copper film. The optimum condition (with a resistivity of 1.98 $\mu$$\Omega$-cm) is suggested as the rapid thermal nitriding at 400oC for 120 sec.

Keywords

References

  1. V. M. Donnelly and M. E. Gross, J. Vac. Sci & Technol., A 11, 66 (1993) https://doi.org/10.1116/1.578721
  2. J. B. Webb, D. Nosthcott and I. Emesh, Thin Solid Films., 270, 483 (1995) https://doi.org/10.1016/0040-6090(95)06706-X
  3. K. Abe, Y. Harada and H. Onoda, 36th IEEE Ann. Internat. Relib. Phys. Sym, 342 (1998)
  4. J. H. Oh, H. S. Lee, A. Paul and C. M. Lee, Jpn. J. Appl. Phys., 40, 5294 (2001) https://doi.org/10.1143/JJAP.40.5294
  5. V. U. Dubin, C. J. Ting, R. cheeeing, VMIC conf. 69 (1997)
  6. C. S. Hsiung, K. Hsish, W. Y. Hseeh, and W. Lur, proc. Of Adv. Metal. Conf. (AMC), 1999, MRS, p.133
  7. Y. S. Kim, D. Jung and S. K. Kim, Thin Solid Films., 349, 36 (1999) https://doi.org/10.1016/S0040-6090(99)00162-5
  8. J. H. Oh. S. W. Lee, J. B. Kim and C. M. Lee, J. Korean Phys. Soc., 39, 50 (2001)
  9. D. P. Tracy, D. B. Knorr, J. Electron. Mat., 22, 611 (1993) https://doi.org/10.1007/BF02666406
  10. C. Lingk and M. E. Gross, J. Appl. Phys., 84, 554 (1998) https://doi.org/10.1063/1.368856
  11. G. P. Beyer, P. Kitabjiaw, S. H. Brongersma, J. Proost, H. Bender, E. Richard, I. Vervoort, P. Hey, P. Zharg and K. Maex, Proc. Of ULSI XV conf. 2000, MRS, P. 167
  12. E. M. Zielinski, R. P. Vinci and J. C. Bravumn, J. Appl. Phys., 76, 4516 (1999) https://doi.org/10.1063/1.357283
  13. T. Fukada, M. Hasegawa, Y. Toyoda, K. Sato, M. Nunoshita and H. Kotani : Ext. Abs. 53rd Autumn meeting, Jpn. Soc. Appl. Phys., 18p-ZR-3 (1992)
  14. J. Li, Y. Shacham-Diamond, J. W. Mayer and E. G. Colgan: Proc. VMIC Conference, 153 (1991)
  15. J. M. E. Harper, C. Cabral, P. C. Andricasos, L. Gigrac, I. C. Noyan, K. P. Rodbell and C. K . Hu, J. Appl. Phys., 86, 2516 (1999) https://doi.org/10.1063/1.371086
  16. J. H. O, A. W. Lee, C. H. Lee, Korean Journal of Materials Research., 11, 9 (2001)