DOI QR코드

DOI QR Code

Effects of Salt and Precursor pH on Synthesizing Behavior and Grain Morphology of Mullite in Aqueous System

수용성 매체에서 뮬라이트의 합성거동 및 입자형상에 미치는 염 및 전구체 pH의 영향

  • Jung, Yeon-Gil (Department of Ceramic Science and Engineering, Changwon National University) ;
  • Lee, Jae-Ean (Department of Ceramic Science and Engineering, Changwon National University) ;
  • Shin, Young-Ill (Department of Ceramic Science and Engineering, Changwon National University) ;
  • Kim, Jae-Won (Department of Ceramic Science and Engineering, Changwon National University) ;
  • Jo, Chang-Yong (High Temperature Materials Group, Korea Institute of Machinery and Materials)
  • 정연길 (창원대학교 재료공학과) ;
  • 이재언 (창원대학교 재료공학과) ;
  • 신영일 (창원대학교 재료공학과) ;
  • 김재원 (창원대학교 재료공학과) ;
  • 조창용 (한국기계연구원 내열재료그룹)
  • Published : 2003.04.01

Abstract

The effects of the salt and the precursor pH on the synthesizing behavior and the morphology of mullite have been studied. Two kinds of mullite precursor sols were prepared by the dissolution of two kinds of salt (aluminum nitrate enneahydrate, Al($NO_3$)$_3$$9H_2$O; type I and aluminum sulfate 14∼18 water, (SO$Al_4$)$_3$$\cdot$$14∼18H_2$O; type II) into the mixture of colloidal silica sol, respectively. Precursor pH of the sols was controlled to the acidic (pH= 1.5∼2) and basic (pH= 8.5∼9) conditions. The co-products with nitrate and sulfate were completely eliminated at $500^{\circ}C$ and $850^{\circ}C$, respectively, which was confirmed by TG/DTA results. The synthesizing temperature of mullite phase was found to be above $1200^{\circ}C$ for pH= 1.5∼2 and above $1300^{\circ}C$ for pH= 8.5∼9 in type I. However, in type II, the synthesizing temperature of mullite was decreased to $850^{\circ}C$ for pH= 1.5∼2 and $1100^{\circ}C$ for pH= 8.5∼9. The grain size of the mullite synthesized at pH= 8.5∼9 was larger than that at pH= 1.5∼2 in overall heat-treated temperatures, showing smaller grain size in type II. Aspect ratio of the mullite grains was more increased at pH= 1.5∼2 than pH= 8.5∼9 in type I, showing similar aspect ratio at both pH conditions in type II. It was found that the synthesizing temperature and grain size were predominantly governed by the initial precursor pH and decomposition of the salt, with minor effect on the grain morphology.

Keywords

References

  1. P. C. Dokko, J. A. Pask and K. S. Nazdiyasni, J. Am. Ceram. Soc., 60(3-4), 150 (1997) https://doi.org/10.1111/j.1151-2916.1977.tb15492.x
  2. R. R.Tummala J. Am. Ceram. Soc., 7495), 99 (1983)
  3. I. A. Aksay, D. M. Dabbs and M. Sarikaya, J. Am. Ceram. Soc., 74(10), 2343 (1991) https://doi.org/10.1111/j.1151-2916.1991.tb06768.x
  4. J. Klug and S. Prochaka, J. Am. Ceram. Soc., 70, 750 (1987) https://doi.org/10.1111/j.1151-2916.1987.tb04875.x
  5. K. Okada(et al.), Am, Ceram. Soc. Bull., 70, 1633 (1991)
  6. T. I. Mah and K. S. Mazdiyashi, J. Am. Ceram. Soc., 66, 699 (1983) https://doi.org/10.1111/j.1151-2916.1983.tb10532.x
  7. Y. G. Choi, J. Kor. Ceram. Soc., 36(7), 773 (1999)
  8. H. Suzuki, Y. Tomokiyo, Y. Suyama and H. Saito, J. Kor. Ceram. Soc., 96(1), 67-73 (1988) https://doi.org/10.2109/jcersj.96.67
  9. J. A. Pask, X. W. Zhang, A. P. Tomsia and B. E. Yoldas, J. Am. Ceram. Soc., 70(10), 704-707 (1987) https://doi.org/10.1111/j.1151-2916.1987.tb04867.x
  10. O. Sakurai, N. Mizutani and M. Kato, Yogyo-Kyokai-Shi, 96(6), 639-645 (1998)
  11. ?A. K. Chakravorty and D. K. Ghosh, Yogyo-Kyokai-Shi, 71(11), 978-987 (1998)
  12. Y. Hirata, K. Sakeda, Y. Matsushita and K.Shimada, Yogyo-Kyokai-Shi, 93(9), 577-580 (1985) https://doi.org/10.2109/jcersj1950.93.1081_577
  13. J. E. Lee, J. W. Kim, Y. G. Jung, J. C. Chang and C. Y. Jo, Kor. J. Mater. Res., 12(7), 573-579 (2002) https://doi.org/10.3740/MRSK.2002.12.7.573
  14. T. A. Ring, 'Fundamentals of Ceramic Powder Processing and Synthesis', 340, Academic Press (1996)
  15. H. L. Lim and J.K.Ham, J. Kor. Ceram. Soc., 26(6), 763-770 (1989)
  16. K. H. Lee, B. H. Lee, Y. H. Kim, K. O. Oh and Y. H. Baik, J. Kor. Ceram. Soc., 28(7), 503-508 (1991)
  17. K. Y. Kim, Y. H. Kim, B. H. Kim and D. J. Lee, J. Kor. Ceram. Soc., 26(5), 682-690 (1989)
  18. G. M. Anikumar, P. Mukundan, A. D. Damodaran and K.G.W.Warrier, Mater. Lett., 33, 117 (1997) https://doi.org/10.1016/S0167-577X(97)00090-6
  19. K. Okada and N. Otuska, J. Am. Ceram. Soc., 74, 2414 (1991) https://doi.org/10.1111/j.1151-2916.1991.tb06778.x
  20. ?J. S. Hong, X. X. Huang and J. K. Guo, Mater. Lett., 24, 327 (1995) https://doi.org/10.1016/0167-577X(95)00118-2
  21. K. C. Song, Mater. Lett., 35, 290 (1998) https://doi.org/10.1016/S0167-577X(97)00268-1
  22. J. W. Kim, D. H. Kim, S. M. Seo, C. Y. Jo, S. J. Cheo, J. C. Kim and Y.K.Park, Kor. J. Mater. Res., 9(12), 1188 (1999)
  23. J. W. Kim, H. C. Kim, D. H. Kim, S. M. Seo, C. Y. Jo, S. J. Choe and J. C. Kim, Kor. J. Mater. Res., 10(3), 233 (2000)
  24. C. G. Ha, Y. G. Jung, J. W. Kim, C. Y. Jo and U. Paik, Mater. Sci. & Eng. A., 337, 212-221 (2002) https://doi.org/10.1016/S0921-5093(02)00034-5
  25. J. Temunjin, K. Okada and K. J. D. Mackenzie, Ceram. Inter., 25, 85 (1999) https://doi.org/10.1016/S0272-8842(98)00005-4
  26. H. Schneider, K. Okada and J. A. Pask, 'Mullite and Mullite Ceramics', John Wiley & Sons. (1994)
  27. S. Satoshi, C. Contreras, H. Juarez, A. Aguilera and J. Serrato, Inter. J. Inorg. Mater., 3, 625-632 (2001) https://doi.org/10.1016/S1466-6049(01)00166-0
  28. ?K. Okada and N.Tsuka, J. Am. Ceram. Soc., 69(9), 652-656 (1986) https://doi.org/10.1111/j.1151-2916.1986.tb07466.x
  29. A. Leonard, S. Suzuki, J. J. Fripiat and C.De Kimpe, J. Phys. Chem., 68(9), 2608-2617 (1964) https://doi.org/10.1021/j100791a037
  30. T. A. Ring, 'Fundamentals of Ceramic Powder Processing and Synthesis', 340-355, Academic Press, 1996