DOI QR코드

DOI QR Code

Effects of Temperature and Precursor-concentration on Characteristics of TiO2 Nanoparticles in Chemical Vapor Condensation Process -Part I: Real-time Particle Characterization by SMPS

화학기상응축 공정에서 TiO2 나노입자 특성에 미치는 반응온도와 전구체 농도의 영향 - Part I: SMPS를 이용한 실시간 입자특성 평가

  • Lee, Chang-Woo (Department of Metallurgy and Materials Science, Hanyang University) ;
  • Yu, Ji-Hun (Department of Metallurgy and Materials Science, Hanyang University) ;
  • Im, Sung-Soon (Department of Metallurgy and Materials Science, Hanyang University) ;
  • Yun, Sung-Hee (Department of Metallurgy and Materials Science, Hanyang University) ;
  • Lee, Jai-Sung (Department of Metallurgy and Materials Science, Hanyang University) ;
  • Choa, Yong-Ho (Department of New-Matarials Technology, Hanyang University)
  • 이창우 (한양대학교 재료화학공학부) ;
  • 유지훈 (한양대학교 재료화학공학부) ;
  • 임성순 (한양대학교 재료화학공학부) ;
  • 윤성희 (한양대학교 재료화학공학부) ;
  • 이재성 (한양대학교 재료공학부) ;
  • 좌용호 (한양대학교 생산공학과)
  • Published : 2003.05.01

Abstract

Properties of nanoparticles synthesized during gas phase reaction were studied in terms of particle behaviors using real-time particle characterization method. For this study, $TiO_2$ nanoparticles were synthesized in the chemical vapor condensation process(CVC) and their in-situ measurement of particle formation and particle size distribution was performed by scanning mobility particle sizer(SMPS). As a result, particle behaviors in the CVC reactor were affected by both of number concentration and thermal coagulation, simultaneously. Particularly, growth and agglomeration between nanoparticles followed two different ways of dominances from coagulations by increase of number concentration and sintering effect by increased temperature.

Keywords

References

  1. R. W. Siegel, NanoStructured Materials, 4(1), 121 (1994) https://doi.org/10.1016/0965-9773(94)90134-1
  2. H. Gleiter, NanoStructured Materials, 6, 3 (1995) https://doi.org/10.1016/0965-9773(95)00025-9
  3. R. L. Holtz, V. Provensano and M. A. Iman, NanoStructured Materials, 7(1/2), 259 (1996) https://doi.org/10.1016/0965-9773(95)00311-8
  4. R. D. Shull, NanoStructured Materials, 7(1/2), 265 (1996) https://doi.org/10.1016/0965-9773(95)00317-7
  5. W. Chang, G. Skandan, H. Hahn, S. C. Danforth and B. H. Kear, NanoStructured Materials, 4(3), 345 (1994) https://doi.org/10.1016/0965-9773(94)90144-9
  6. W. Chang, G. Skandan, S. C. Danforth, B. H. Kear and H. Hahn, NanoStructured Materials, 4(5), 507 (1994) https://doi.org/10.1016/0965-9773(94)90058-2
  7. B. H. Kear and P. R. Strutt, NanoStructured Materials, 6(1/2), 227 (1995) https://doi.org/10.1016/0965-9773(95)00046-1
  8. R. L. Axelbaum, D. P. DuFaux and C. A. Frey, J. Mater. Res., 11, 948 (1996) https://doi.org/10.1557/JMR.1996.0119
  9. J. H. Yu, J. S. Lee and K. H. Ahn, Scripta Materilia, 44(8/9), 2213 (2001) https://doi.org/10.1016/S1359-6462(01)00747-3
  10. T. Seto, T. Nakamoto, K. Okuyama, M. Adachi, Y. Kuga and K.Takeuchi, J. Aerosol Sci., 28(2), 193 (1997) https://doi.org/10.1016/S0021-8502(96)00071-7
  11. D. J. Cheng, W. P. Sun, and m.H. Hon, Thin Solid Films, 45(1), 109 (1987) https://doi.org/10.1016/0040-6090(87)90338-5
  12. J. J. Wu, H. V. Nguyen, R. C. Flagan, K. Okuyama, and Y. Kousaka, AlChE Journal, 34(8), 1249 (1988) https://doi.org/10.1002/aic.690340803
  13. J. H. Yu, Dissertation, Hanyang University, Korea, 2001
  14. M. Smoluchowski, Bull. Acad. Sci., Cracow, la28 (1911)
  15. N. M. Hwang, J. H. Hahn and D. Y. Yoon, J. of Crystal Growth, 162(1/2), 55 (1996) https://doi.org/10.1016/0022-0248(95)00943-4