DOI QR코드

DOI QR Code

A Study of the Photoluminescence of ZnO Thin Films Deposited by Radical Beam Assisted Molecular Beam Epitaxy

라디칼 빔 보조 분자선 증착법 (Radical Beam Assisted Molecular Beam Epitaxy) 법에 의해 성장된 ZnO 박막의 발광 특성에 관한 연구

  • Suh, Hyo-Won (Thin Film materials Research Center, Korea Institute of Science and Technology) ;
  • Byun, Dong-jin (Department of Material Science, Korea University) ;
  • Choi, Won-Kook (Thin Film materials Research Center, Korea Institute of Science and Technology)
  • 서효원 (한국과학기술연구원 박막재료연구센터) ;
  • 변동진 (고려대학교 재료공학과) ;
  • 최원국 (한국과학기술연구원 박막재료연구센터)
  • Published : 2003.06.01

Abstract

II-Ⅵ ZnO compound semiconductor thin films were grown on $\alpha$-Al$_2$O$_3$(0001) single crystal substrate by radical beam assisted molecular beam epitaxy and the optical properties were investigated. Zn(6N) was evaporated using Knudsen cell and O radical was assisted at the partial pressure of 1$\times$10$^{4}$ Torr and radical beam source of 250-450 W RF power. In $\theta$-2$\theta$ x-ray diffraction analysis, ZnO thin film with 500 nm thickness showed only ZnO(0002)and ZnO(0004) peaks is believed to be well grown along c-axis orientation. Photoluminescence (PL) measurement using He-Cd ($\lambda$=325 nm) laser is obtained in the temperature range of 9 K-300 K. At 9 K and 300 K, only near band edge (NBE) is observed and the FWHM's of PL peak of the ZnO deposited at 450 RF power are 45 meV and 145 meV respectively. From no observation of any weak deep level peak even at room temperature PL, the ZnO grains are regarded to contain very low defect density and impurity to cause the deep-level defects. The peak position of free exciton showed slightly red-shift as temperature was increased, and from this result the binding energy of free exciton can be experimentally determined as much as $58\pm$0.5 meV, which is very closed to that of ZnO bulk. By van der Pauw 4-point probe measurement, the grown ZnO is proved to be n-type with the electron concentration($n_{e}$ ) $1.69$\times$10^{18}$$cm^3$, mobility($\mu$) $-12.3\textrm{cm}^2$/Vㆍs, and resistivity($\rho$) 0.30 $\Omega$$\cdot$cm.

Keywords

References

  1. H. Huang and S. Kock, Phys. Status Solidi, B82, 531 (1975)
  2. D. C. Reynolds, D. C. Look, B. Jogai and H. Morko, Solid State Commun., 101, 643 (1977) https://doi.org/10.1016/S0038-1098(96)00697-7
  3. M. Kawasaki, A. Ohtomo, I. Ohkubo, H. Koinuma, Z. K Tang and Y. Segawa, Mater. Sci. Eng., B56, 239 (1988) https://doi.org/10.1016/S0921-5107(98)00248-7
  4. Y. Chen, D. M. Bagnell and T. Yao, Mater. Sci. Eng., B75, 190 (2000) https://doi.org/10.1016/S0921-5107(00)00372-X
  5. M. Joseph, H. Tabata, H. Saeki, K. Ueda and T. Kawai, Physica, B320-303, 140 (2001)
  6. Y. Hatanaka, M. Niraula, A. Nakamura and T. Aoki, Appl. Surf. Sci., 176, 462 (2001) https://doi.org/10.1016/S0169-4332(01)00117-9
  7. G. Xiong, J. Wilkinson, B. Mischuck, S. Tuzeman, K.B. Ucer and R. T. Williams, Appl. Phys. Lett., 80, 1195 (2002) https://doi.org/10.1063/1.1449528
  8. X. Guo, J. H. Choi, H. Tabata and T. Kawai, Jpn. J. Appl. Phys., 40, L177 (2001) https://doi.org/10.1143/JJAP.40.L177
  9. S. F. J. Cox et al., Phys. Rev. Lett., 86, 2601 (2001) https://doi.org/10.1103/PhysRevLett.86.2601
  10. K. K. Kim, J. H. Song, H. J. Jung and W. K. Choi, J. Appl. Phys., 87(7), 3573 (2000) https://doi.org/10.1063/1.372383
  11. B. J. Jin, S. H. Bae, S. Y. Lee and S. Im, Mater. Sci. Eng., B71, 301 (2000) https://doi.org/10.1016/S0921-5107(99)00395-5
  12. W. I. Park, S. J. Jung, G. C. Yi and H. M. Jang, J. Mater. Res., 16, 1358 (2001) https://doi.org/10.1557/JMR.2001.0190
  13. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo and P. Yang, Science, 292, 1897 (2001) https://doi.org/10.1126/science.1060367
  14. Z. W. Pan, Z. R. Dai and Z. L. Wang, Science, 291, 1947 (2001) https://doi.org/10.1126/science.1058120
  15. B. D. Cullity, Elements of X-ray Diffractions, Addison Wesley, Reading, MA, 102 (1978)
  16. K K. Kim, J. H. Song, H. J. Jung, S. J. Park, J. -H. Song, J. Y. Lee and W. K. Choi, J. Vac. Sci. Technol., A18(6), 864 (2000)
  17. Y. Chen, S. K. Hong, H. J. Ko, M. nakajima, T. Yao and Y. Segawa, Appl. Phys. Lett., 76, 245 (2000) https://doi.org/10.1063/1.125716
  18. Y. F. Chen, D. M. Bagnell, H. J. Ko, K T. Park, Z. Zhu, T. Fukuda and T. Yao, J. Cryst. Growth, 207, 87 (1999) https://doi.org/10.1016/S0022-0248(99)00345-0
  19. S. Cho, J. Ma, Y. Kim, Y. Sun, G. K. L. Wong and J. B. Ketterson, Appl. Phys. Lett., 75, 2761 (1999) https://doi.org/10.1063/1.125141
  20. L. E. Brus, J. Chem. Phys., 80, 4403 (1984) https://doi.org/10.1063/1.447218
  21. Y. P. Varshni, Physica, 34, 149 (1967) https://doi.org/10.1016/0031-8914(67)90062-6
  22. H. J. Ko, Thesis (Tohoku University, 2000)
  23. J. C. Kim, H. Rho, L. M. Smith, H. E. Jackson, S. Lee, M. Dobrowolska and J. K Furdyna, Appl. Phys. Lett., 76, 214 (1999) https://doi.org/10.1063/1.124323
  24. R. E. Dietz, J. J. Hopfield and D. G. Thomas, J. Appl. Phys., 32, 2282(963) https://doi.org/10.1063/1.1777060