DOI QR코드

DOI QR Code

Dielectric and Piezoelectric Properties of Nonstoichiometric Sr1±xBi2±yTa2O9 and Sr1±xBi2±yNb2O9 Ceramics

비화학양론 Sr1±xBi2±yTa2O9 과 Sr1±xBi2±yNb2O9 세라믹의 유전 및 압전 특성

  • Cho, J.A. (Department of Ceramic Science and Engineering) ;
  • Park, S.E. (Department of Ceramic Science and Engineering) ;
  • Song, T.K. (Department of Ceramic Science and Engineering) ;
  • Kim, M.H. (Department of Ceramic Science and Engineering) ;
  • Lee, H.S. (Department of Physics, Changwon National University)
  • 조정아 (창원대학교 세라믹공학과) ;
  • 박성은 (창원대학교 세라믹공학과) ;
  • 송태권 (창원대학교 세라믹공학과) ;
  • 김명호 (창원대학교 세라믹공학과) ;
  • 이호섭 (창원대학교 물리학과)
  • Published : 2003.06.01

Abstract

$Sr_{l}$ $\pm$x/$Bi_{2}$ $\pm$y/$Ta_2$ $O_{9}$ and $Sr_{l}$ $\pm$$Bi_{x}$ $2\pm$y$Nb_2$$O_{9}$ ceramics were prepared by a solid state reaction method. X-ray diffraction analysis indicated that single-phase of Bi-layered perovskite was obtained. According to Sr/Bi content ratio, Curie temperature( $T_{c}$), electromechanical factor($K_{p}$ ) and mechanical quality factor($Q_{m}$ ) were measured. The Curie temperature of SBN(SBT) rose from $414^{\circ}C$(314$^{\circ}C$) to $494^{\circ}C$(426$^{\circ}C$) when Sr/Bi content ratio was increased. In the case of Sr/Bi content ratio = 0.55/2.3, the maximum value of the mechanical quality factor $Q_{m}$ of SBT and SBN were obtained 3320 and 1010, respectively.

Keywords

References

  1. K. Shibata, K. Shoji and K. Sakata, Jpn. J. Appl. Phys., 40, 5719 (2001) https://doi.org/10.1143/JJAP.40.5719
  2. M. Nanao, M. Hirose and T. Tsukada, Jpn. J. Appl. Phys., 40, 5727 (2001) https://doi.org/10.1143/JJAP.40.5727
  3. Ogawa, M. Kimura, A. Ando and Y. Sakabe, Jpn. J. Appl. Phys., 40, 5715 (2001) https://doi.org/10.1143/JJAP.40.5715
  4. T. Wada, K. Toyoike, Y. Imanaka and Y.Matsuo, Jpn. J. Appl. Phys., 40, 5703 (2001) https://doi.org/10.1143/JJAP.40.5703
  5. A. Ando, M. Kimura, T. Sawada, K. Hayashi and Y. Sakabe, Ferroelectrics, 268, 65 (2002) https://doi.org/10.1080/713715961
  6. H. Nagata and T. Takenaka, Ferroelectrics, 273, 359 (2002) https://doi.org/10.1016/S0955-2219(01)00005-X
  7. E. B. Brzozowski, A. C. Caballero, J. F. Fernandez and M. Villegas, Ferroelectrics, 268, 321 (2002) https://doi.org/10.1080/00150190211096
  8. M. Villegas, A. C. Caballero and J. F. Fernandez, Ferroelectrics, 267, 165 (2002) https://doi.org/10.1080/00150190210985
  9. C. W. Ahn, I. W. Kim, M. S. Ha, W. K. Seo, J. S. Lee and A. S. Yi, Ferroelectrics, 273, 261 (2002) https://doi.org/10.1080/713716377
  10. L. Lascano, A.C. Caballero, M. Villegas, J. de Frutos and J. F. Fernandez, Ferroelectrics, 273, 309 (2002) https://doi.org/10.1080/00150190211765
  11. K. Kato, C. Zheng, Jeffrey M. Finder and Sandwip K. Dey, J. Am. Ceram. Soc., 81, 1869 (1998) https://doi.org/10.1111/j.1151-2916.1998.tb02559.x
  12. Jeong Seog Kim, Chae-il Cheon, Hae-sub Shim and Chang Hee Lee, J. Eur. Ceram. Soc., 21, 1295 (2001) https://doi.org/10.1016/S0955-2219(01)00004-8
  13. Y. Torii, K. Tato, A. Tsuzuki, H. J. Hwang and S. K. Dey, J. Mater. Sci. Lett., 17, 827 (1998) https://doi.org/10.1023/A:1006642623622
  14. M. J. Forbess, S. Seraji, Y. Wu, C. P. Nguyen and G. Z. Cao, Appl. Phys. Lett., 76, 2934 (2000) https://doi.org/10.1063/1.126521
  15. Y. Wu and G. Cao, J. Mat. Sci. Lett., 19, 267 (2000) https://doi.org/10.1023/A:1006735422928
  16. J. K. Kim, S. S. Kim, E. K. Choi, J. Kim, T. K. Song and I. S. Kim, Korean J. Mat. Res., 11, 960 (2001)
  17. J. H. Park, J. G. Park, B. K. Kim and Y. H. Kim, Korean J. Mat. Res., 11, 6 (2001)