DOI QR코드

DOI QR Code

Deactivation Kinetics in Heavily Boron Doped Silicon Using Ultra Low Energy Ion Implantation

초 저 에너지 이온주입으로 고 조사량 B 이온 주입된 실리콘의 Deactivation 현상

  • Yoo, Seung-Han (Department of Materials Science and Engineering, Hongik University) ;
  • Ro, Jae-Sang (Department of Materials Science and Engineering, Hongik University)
  • 유승한 (홍익대학교 신소재 공학과) ;
  • 노재상 (홍익대학교 신소재 공학과)
  • Published : 2003.06.01

Abstract

Shallow $p^{+}$ n junction was formed using a ULE(ultra low energy) implanter. Deactivation phenomena were investigated for the shallow source/drain junction based on measurements of post-annealing time and temperature following the rapid thermal annealing(RTA) treatments. We found that deactivation kinetics has two regimes such that the amount of deactivation increases exponentially with annealing temperature up to $850^{\circ}C$ and that it decreases linearly with the annealing temperature beyond that temperature. We believe that the first regime is kinetically limited while the second one is thermodynamically limited. We also observed "transient enhanced deactivation", an anomalous increase in sheet resistance during the early stage of annealing at temperatures higher than X$/^{\circ}C$. Activation energy for transient enhanced deactivation was measured to be 1.75-1.87 eV range, while that for normal deactivation was found to be between 3.49-3.69 eV.

Keywords

References

  1. E. Chason, S. T. Picuraux, J. M. Poare, J. O. Borland, M. I. Current, T. Diaz de la Rubia, D. J. Eaglesham, O. W. Holland, M. E. Law, C. W. Magee, J. W. Mayer, J. Melngailis, and A. F. Tasch, J. Appl. Phys. 81, 6513 (1997) https://doi.org/10.1063/1.365193
  2. A. E. Michel, W. Rausch, P. A. Rousheim, and R. H. Kastl, Appl. Phys. Lett. 50, 416 (1987) https://doi.org/10.1063/1.98160
  3. D. J. Eaglesham, P. A. Stolk, H.-J. Gossmann, and J. M. Poate, Appl. Phys. Lett. 65, 2305 (1994) https://doi.org/10.1063/1.112725
  4. Aditya Agarwal, 2000 International Conference on Ion Implantation Technology Procedeeings, p. 155 (2000)
  5. Juri Kato, J. Electrochem. Soc. 141, 3158 (1994) https://doi.org/10.1149/1.2059294
  6. W. Luo, S. Yang, P. Clancy and M. O. Thompson, J. Appl. Phys. 90, 2262 (2001) https://doi.org/10.1063/1.1385360
  7. M. Murto, K. Jones, M. Rendon and S. Talwar, 2000 International Conference on Ion Implantation Technology Procedeeings, Alpbach, p. 155 (2001)
  8. T.E. Siedel and MacRae, Fisrt Intl. Conf. on Ion Implantation (Thousand Oaks, Gordon and Breach, New York, 1971
  9. H. Ryssel, K. Muller, K. Haberger, R. Henkelmann, and F. Jahnel, Appl. Phys. 22, 35 (1980) https://doi.org/10.1007/BF00897929
  10. J. Liu, V. Krishnamoorthy and K. S. Jones, 1996 International Conference on Ion Implantation Technology Procedeeings, Austin, p. 626 (1997)
  11. H. Ahmed, Properties of Silicon, 327 (INSPEC, London and New York 1988)
  12. P. M. Fahey, P. B. Griffin and J. D. Plummer, Rev. Mod. Phys. 61, 289 (1989) https://doi.org/10.1103/RevModPhys.61.289
  13. P. A. Stolk, H.-J. Gossmann, D. J. Eaglesham, D. C. Jacobson, C. S. Rafferty, G. H. Gilmer, M. Jaraiz, and J. M. Poate, J. Appl. Phys. 81, 6031 (1997) https://doi.org/10.1063/1.364452