DOI QR코드

DOI QR Code

Properties of Field Emission Electrons for CVD-grown Carbon Nanotubes

CVD법으로 제조한 탄소 나노튜브의 전계 전자 방출 특성

  • Lee, Rhim-Youl (Department of New Materials Engineering, Dankook University)
  • 이임렬 (단국대학교, 신소재공학)
  • Published : 2003.07.01

Abstract

The microstructure and field emission properties of carbon nanotubes(CNT) grown by Ni-catalytic chemical vapor deposition(CVD) were investigated. CVD-grown CNT had a high density of curved shape with randomly oriented. It was found that an increase in electric field caused an increase in field emission current and field emission sites of CNT. The maximum field emission current density was measured to be 3.6 ㎃/$\textrm{cm}^2$ at 2.5 V/$\mu\textrm{m}$, while the brightness of 56 cd/$\textrm{cm}^2$ was observed for the CNT-grown area of 0.8 $\textrm{cm}^2$ from a phosphor screen. Field emission current at constant electric field gradually decreased initially and then stabilized with time.

Keywords

References

  1. C. Nutzendal, A. Zuttel, D. Chartouni and L. Schlapbach, Elecrochem. Solid-state Lett., 2, 30 (1999) https://doi.org/10.1149/1.1390724
  2. O. R. Monteiro, V. P. Mammana, M. C. Salvadori, J. W. Auger and S. Dimitrijevie, Appl. Phys. Lett., 71, 121 (2000)
  3. S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell and H. Dai, Science, 283, 512 (1999) https://doi.org/10.1126/science.283.5401.512
  4. M. Yudasaka, Y. Kasuya, F. Kokai, K. Takahashi, M. Takizawa, S. Bandow and S. Iijima, Appl. Phys. Lett., 74, 377 (2002) https://doi.org/10.1063/1.123076
  5. M. Sveningsson, R. E. Morjan, O. A. Nerushev, Y. Sato, J. Backstrom, E. E. B. Compell and F. Rohmund, Appl. Phys. A., 73, 409 (2001) https://doi.org/10.1007/s003390100923
  6. Y. Chen, D. T. Shaw and L. Guo, Appl. Phys. Lett., 76, 2469 (2000) https://doi.org/10.1063/1.126379
  7. P. M. Ajayan, Carbon Nanotubes, p. 111, CRT, New York, USA (1977)
  8. Y. H. Wang, J. Lin and C. H. A. Huan, Thin Solid Films, 405, 243 (2002) https://doi.org/10.1016/S0040-6090(01)01746-1
  9. J. M. Bonard, J. P Salvetat, T. Stockli, W. A. de Heer, L. Forro and A. Chatelain, Appl. Phys. Lett., 73, 918 (1998) https://doi.org/10.1063/1.122037
  10. R. H. Fowler and L. Nordheim, Proc. R. Soc. Lond. Ser., A119, 173 (1928) https://doi.org/10.1098/rspa.1928.0091
  11. O. Groning, O. M. Kuttel, C. Emmenegger, P. Groning and L. Schlapbach, J. Vac. Sci. Tech., B18, 665 (2000) https://doi.org/10.1116/1.591258
  12. J. P. Barbour, W. W. Dolan, J. K. Trolan, E. E. Martin and W. P. Dyke, Phys. Rev., 92, 45 (1953) https://doi.org/10.1103/PhysRev.92.45
  13. J. M. Kim, W. B. Chol, N. S. Lee and J. E. Jung, Diamond & Related Materials, 9, 1184 (2000) https://doi.org/10.1016/S0925-9635(99)00266-6
  14. G. A. J. Amartunga and S. R. P. Silva, Appl. Phys. Lett., 68, 2529 (1996) https://doi.org/10.1063/1.116173
  15. K. A. Dean and B. R. Chalamala, Appl. Phys. Lett., 75, 3017 (1999) https://doi.org/10.1063/1.125219