DOI QR코드

DOI QR Code

Influence of Hydrogen and Oxygen on the Thermotransport of Hydrogen in Modified Zircaloy-4

Modified Zircaloy-4에서 수소의 Thermotransport에 있어서 수소와 산소의 보고

  • Kim, Hyun-Sook (Department of Materials Science and Engineering, Hanyang University) ;
  • Kim, Seon-Jin (Department of Materials Science and Engineering, Hanyang University)
  • Published : 2003.07.01

Abstract

The hydrogen redistribution induced by thermotransport at temperatures likely to be encountered in nuclear power reactors (300-$340^{\circ}C$) was investigated in modified Zircaloy-4 alloys. Modified Zircaloy-4 alloys were prepared by altering the chemical composition of Zircaloy-4; the oxygen content of Zircaloy-4 (0.1 wt%) was increased to 0.2, 0.5 and 1.0 wt%. The heat of transport ($Q^{*}$ ) for hydrogen was measured by changing the initial hydrogen and oxygen concentrations. It was found that the heat of transport was not affected by increases in the initial hydrogen concentration from 63.3 to 91.7 ppm. However, the value of $Q^{Q}$ decreased from 6.8 to 4.5 ㎉/mol as the initial oxygen concentration was increased from 0.2 to 1.0 wt%.

Keywords

References

  1. H. S. Hong, S. J. Kim and K. S. Lee, J. Nucl. Mater., 238, 211 (1996) https://doi.org/10.1016/S0022-3115(96)00449-7
  2. M. G. Fontana, Advances in corrosion Science and Technology, Plenum Press, New York, 1976
  3. A. Sawatzky and M. Duclos, Trans. AIME, 245, 831 (1969)
  4. R. Kuwae, K. Sato, E. Higashinakagawa, J. Kawashima and S. Nakamura, J. Nucl. Mater., 119, 229 (1983) https://doi.org/10.1016/0022-3115(83)90199-X
  5. K. Forsburg and A. R. Massih, J. Nucl. Mater., 172, 130 (1990) https://doi.org/10.1016/0022-3115(90)90018-I
  6. A. Sawatzky, J. Nucl. Mater., 9, 364 (1963) https://doi.org/10.1016/0022-3115(63)90154-5
  7. B. J. S. Wilkins and A. Wasylyshyn, J. Nucl. Mater., 29, 235 (1969) https://doi.org/10.1016/0022-3115(69)90104-4
  8. A. Sawatzky, J. Nucl. Mater., 2, 321 (1960) https://doi.org/10.1016/0022-3115(60)90004-0
  9. P. Shewmon, Diffusion in Solids, The Minerals, Metals and Materials Society, ennsylvania, 1989
  10. H. S. Hong, S. J. Kim K. S. Lee, J. Nucl. Mater., 257, 15 (1998) https://doi.org/10.1016/S0022-3115(98)00430-9
  11. J. J. Kearns, J. Nucl. Mater., 43, 330 (1972) https://doi.org/10.1016/0022-3115(72)90065-7
  12. E. A. Gulbransen and K. F. Andrew, Trans. AIME, 203, 136 (1955)
  13. J. J. Kearns, J. Nucl. Mater., 22, 292 (1967) https://doi.org/10.1016/0022-3115(67)90047-5
  14. M. Mallett and W. Albricht, J. Electrochem. Soc., 104, 142 (1957) https://doi.org/10.1149/1.2428522
  15. W. H. Erickson, J. Electrochem. Tech., 4, 205 (1966)
  16. A. Sawatzky, J. Nucl. Mater., 2, 62 (1960) https://doi.org/10.1016/0022-3115(60)90025-8
  17. Ostberg, J. Nucl. Mater., 5, 208 (1962) https://doi.org/10.1016/0022-3115(62)90101-0
  18. G. Alefeld and J. Volkl, Hydrogen in metals, Springer, Berlin, 1978
  19. M. Someno, Nihon Kinzoku Gakkaishi, 24, 249 (1960)
  20. J. M. Markowitz, Westinghouse Atomic Power Division (USA) Report, WAPD-TM-104 (1958)
  21. A. McNabb and P. K. Foster, Trans. AIME, 227, 618 (1963)
  22. B. G. Pound, J. O'm. Bockris, B. E. Conway, R.E.White(Eds.), Modern Aspects of Electrochemistry, N. 25, Chap. 2, Plenum, New York, 1993