DOI QR코드

DOI QR Code

Si 기판에서 원자층 화학 기상 증착법으로 제조된 Al2O3 및 ZrO2 유전 박막의 결정학적 특성 및 계면 구조 평가

Crystallographic and Interfacial Characterization of Al2O3 and ZrO2 Dielectric Films Prepared by Atomic Layer Chemical Vapor Deposition on the Si Substrate

  • 김중정 ((주)하이닉스반도체 메모리연구소) ;
  • 양준모 ((주)하이닉스반도체 메모리연구소) ;
  • 임관용 ((주)하이닉스반도체 메모리연구소) ;
  • 조홍재 ((주)하이닉스반도체 메모리연구소) ;
  • 김원 ((주)하이닉스반도체 메모리연구소) ;
  • 박주철 ((주)하이닉스반도체 메모리연구소) ;
  • 이순영 ((주)하이닉스반도체 메모리연구소) ;
  • 김정선 (국방과학연구소 기술연구본부 5부 5팀) ;
  • 김근홍 (국방과학연구소 기술연구본부 5부 5팀) ;
  • 박대규
  • Kim, Joong-Jung (Memory R&D Division, Hynix Semiconductor Inc.) ;
  • Yang, Jun-Mo (Memory R&D Division, Hynix Semiconductor Inc.) ;
  • Lim, Kwan-Yong (Memory R&D Division, Hynix Semiconductor Inc.) ;
  • Cho, Heung-Jae (Memory R&D Division, Hynix Semiconductor Inc.) ;
  • Kim, Won (Memory R&D Division, Hynix Semiconductor Inc.) ;
  • Park, Ju-Chul (Memory R&D Division, Hynix Semiconductor Inc.) ;
  • Lee, Soun-Young (Memory R&D Division, Hynix Semiconductor Inc.) ;
  • Kim, Jeong-Sun (Technology and Research Center -5 -5, Agency for Defense Development) ;
  • Kim, Geun-Hong (Technology and Research Center -5 -5, Agency for Defense Development) ;
  • Park, Dae-Gyu (IBM Microelectronics, Semiconductor R&D Center)
  • 발행 : 2003.08.01

초록

Crystallographic characteristics and interfacial structures of $Al_2$$O_3$and $ZrO_2$dielectric films prepared by atomic layer chemical vapor deposition (ALCVD) were investigated at atomic scale by high-resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray spectroscopy (EDS)/electron energy-loss spectroscopy (EELS) coupled with a field-emission transmission electron microscope. The results obtained from cross-sectional and plan-view specimens showed that the $Al_2$$O_3$film was crystallized by annealing at a high temperature and its crystal system might be evaluated as either cubic or tetragonal phase. Whereas the $ZrO_2$film crystallized during deposition at a low temperature of ∼$300^{\circ}C$ was composed of both tetragonal and monoclinic phase. The interfacial thickness in both films was increased with the increased annealing temperature. Further, the interfacial structures of X$ZrO_2$$O_3$and $ZrO_2$films were discussed through analyses of EDS elemental maps and EELS spectra obtained from the annealed films, respectively.

키워드

참고문헌

  1. P. Singer, Semicond. Int. 23, 66 (2000)
  2. J. Baliga, Semicond. Int. 23, 83 (2000)
  3. G. S. Higashi and C. G. Flemming, Appl. Phys. Lett. 55, 1963 (1989) https://doi.org/10.1063/1.102337
  4. E. P. Gusev, M. Copel, E. Cartier, I. J. R. Baumvol, C. Krug and M. A. Gribelyuk, Appl. Phys. Lett. 76, 176 (2000) https://doi.org/10.1063/1.125694
  5. D. G. Park, H. J. Cho, K. Y. Lim, C. Lim, I. S. Yeo, J. S. Roh and J. W. Park, J. Appl. Phys. 89, 6275 (2001) https://doi.org/10.1063/1.1368869
  6. G. B. Alers, D. J. Werder, Y. Chabal, H. C. Lu, E. P. Gusev, E. Garfunkel, T. Gustafsson and R. S. Urdahl, Appl. Phys. Lett. 73, 1517 (1998) https://doi.org/10.1063/1.122191
  7. I. C. Kizilyalli, R. P. S. Huang and P. K. Roy, IEEE Electron Device Lett. 19, 423 (1998) https://doi.org/10.1109/55.728900
  8. J. Shappir, A. Anis and I. Pinsky, IEEE Trans. Electron Devices 33, 442 (1986) https://doi.org/10.1109/T-ED.1986.22510
  9. M. Copel, M. A. Gribelyuk and E. Gusev, Appl. Phys. Lett. 76, 436 (2000) https://doi.org/10.1063/1.125779
  10. K. Y. Lim, D. G. Park, H. J. Cho, J. J. Kim, J. M. Yang, I. S. Choi, I. S. Yeo and J. W. Park, J. Appl. Phys. 91, 414 (2002) https://doi.org/10.1063/1.1425073
  11. L. Kang, Y. Jeon, K. Onishi, B. H. Lee, W. J. Qi, R. Nieh, S. Gopalan and J. C. Lee, VLSI Tech. Symp. 2000, 44 https://doi.org/10.1109/VLSIT.2000.852762
  12. G. D. Wilk, R. M. Wallace and J. M. Anthony, J. Appl. Phys. 89, 5243 (2001) https://doi.org/10.1063/1.1361065
  13. D. Shindo and K. Hiraga, High-Resolution Electron Microscopy for Materials Science, Chapt. 1, Springer-Verlag, Tokyo (1998)
  14. D. Shindo and T. Oikawa, Analytical Electron Microscopy for Materials Science, Chapt. 4, Springer-Verlag, Tokyo (2002)
  15. R. F. Egerton, Electron Energy-Loss Specroscopy in the Electron Microscope 2nd edn., Plenum, New York (1996)
  16. M. Kawasaki, T. Oikawa, K. Ibe, K. H. Park and M. Shiojiri, J. Electron Microsc. 47, 335 (1998) https://doi.org/10.1093/oxfordjournals.jmicro.a023600
  17. J. M. Yang, S. Lee, J. C. Park, D. W. Lee, T. K. Lee, J. T. Choi, S. Y. Lee, M.Kawasaki, T.Oikawa, J. Appl. Phys. 93, 855 (2003) https://doi.org/10.1063/1.1529070
  18. D. A. Muller, T. Sorsch, S. Moccio, F. H. Baumann, K. Evans-Lutterodt and G. Timp, Nature 399, 758 (1999) https://doi.org/10.1038/21602
  19. O. Renault, L. G. Gosset, D. Rouchon and A. Ermolieff, J. Vac. Sci. Technol. A20, 1867 (2002) https://doi.org/10.1116/1.1507330
  20. W. D. Kingery, Introduction to Ceramics 2nd edn., John Wiley & Sons, New York (1976)
  21. Diffraction data, JCPDS file (1999)
  22. M. Copel, M. A. Gribelyuk and E. P. Gusev, Appl. Phys. Lett. 76, 436 (2000) https://doi.org/10.1063/1.125779