DOI QR코드

DOI QR Code

Thermoelectric Properties of ZnkIn2O3+k(k=1∼9) Homologous Oxides

Homologous 산화물 ZnkIn2O3+k(k=1∼9)의 열전 특성

  • Nam, Yun-Sun (Reliability Assessment & Materials Evaluation Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Choi, Joung-Kyu (Reliability Assessment & Materials Evaluation Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Hong, Jeong-Oh (Reliability Assessment & Materials Evaluation Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Young-Ho (Reliability Assessment & Materials Evaluation Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Myung-Hyun (Reliability Assessment & Materials Evaluation Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Seo, Won-Seon (Reliability Assessment & Materials Evaluation Center, Korea Institute of Ceramic Engineering and Technology)
  • 남윤선 (요업(세라믹)기술원 신뢰성ㆍ평가분석센터) ;
  • 최정규 (요업(세라믹)기술원 신뢰성ㆍ평가분석센터) ;
  • 홍정오 (요업(세라믹)기술원 신뢰성ㆍ평가분석센터) ;
  • 이영호 (요업(세라믹)기술원 신뢰성·평가분석센터) ;
  • 이명현 (요업(세라믹)기술원 신뢰성ㆍ평가분석센터) ;
  • 서원선 (요업(세라믹)기술원 신뢰성ㆍ평가분석센터)
  • Published : 2003.08.01

Abstract

In order to investigate the thermoelectric properties of $Zn_{k}$ $In_2$$O_{ 3+k}$ homologous compounds, the samples of $Zn_{k}$ /$In_2$$O_{3+k}$ / (k = integer between 1 and 9) were prepared by calcining the mixed powders of ZnO and $In_2$$O_3$fellowed by sintering at 1823 K for 2 hours in air, and their electrical conductivities and Seebeck coefficients were measured as a function of temperature in the range of 500 K to 1150 K. X-ray diffraction analysis of the sintered samples clarified that single-phase specimens were obtained for $Zn_{k} /$In_2$$O_{3+k}$ with k = 3, 4, 5, 7, 8, 9. Electrical conductivity of the $Zn_{k}$ $In_2$$O_{3+k}$ / decreased with increasing temperature, and decreased with increasing k for k $\geq$ 3. The Seebeck coefficient was negative at all the temperatures for all compositions, confirming that $Zn_{k}$ $In_2$$O_{3+k}$ / is an n-type semiconductor. Absolute values of the Seebeck coefficient increased linearly with increasing temperature and increased with increasing k for k $\geq$ 3. The temperature dependence of the Seebeck coefficient indicated that Z $n_{k}$I $n_2$ $O_{3+k}$ could be treated as an extrinsic degenerate semiconductor. Figure-of-merits of Z $n_{k}$I $n_2$ $O_{3+k}$ were evaluated from the measured electrical conductivity and Seebeck coefficient, and the reported thermal conductivity. Z $n_{7}$ I $n_2$ $O_{10}$ has the largest figure-of-merit over all the temperatures, and its highest value was $1.5{\times}$10$^{-4}$ $K^{-1}$ at 1145 K.5 K.

Keywords

References

  1. H. Ohta, W.-S. Seo and K. Koumoto, J. Am. Ceram. Soc., 79(8), 2193 (1996) https://doi.org/10.1111/j.1151-2916.1996.tb08958.x
  2. T. Moriga, D. D. Edqards, T. O. Mason, G. B. Palmer, K. R. Poeppelmeier, J. L. Schindler and C. R. Kannewurf, J. Am. Ceram. Soc., 81(5), 1310 (1998) https://doi.org/10.1111/j.1151-2916.1998.tb02483.x
  3. T. Minami, T. Kakumu and S. Tanaka, J. Vac. Sci. Technol., A14(3), 1704 (1996) https://doi.org/10.1116/1.580323
  4. N. Naghavi, C. Marcel, L. Dupont, A. Rougier, J.-B.Leriche and C. Guery, J. Mater. Chem., 10, 2315 (2000) https://doi.org/10.1039/b002094j
  5. N. Naghavi, L. Dupont, C. Marcel, C. Maugy, B. Laik, A. Rougier, C. Guery and J. M. Tarascon, Electrochimica Acta, 46, 2007 (2001) https://doi.org/10.1016/S0013-4686(01)00417-0
  6. T. Minami, H. Sonohara, T. Kakumu and S. Tanaka, Jpn. J. Appl. Phys., Part 2, 34(8A), L971 (1995) https://doi.org/10.1143/JJAP.34.L971
  7. J. M. Phillips, R. J. Cava, G. A. Thomas, S. A. Carter, J. Kwo, T. Siegrist, J. J. Krajewski, J. H. Marshall, W. F. Peck Jr. and D. H. Rapkine, Appl. Phys. Lett., 67(15), 2246 (1994) https://doi.org/10.1063/1.115118
  8. L. Dupont, C. Maugy, N. Naghavi, C. Guery and J. T. Tarascon, J. Solid State Chem., 158, 119 (2001) https://doi.org/10.1006/jssc.2000.9059
  9. N. Cusack and P. Kendall, Proc. Phys. Soc., 72, 898 (1958) https://doi.org/10.1088/0370-1328/72/5/429
  10. C. Li, Y. Bando, M. Nakamura and N. Kimizuka, J. Electron Microsc., 46, 119 (1997) https://doi.org/10.1093/oxfordjournals.jmicro.a023499
  11. N. Nakamura, M. Kimizuka and T. Mohri, J. Solid State Chem., 86, 16 (1990) https://doi.org/10.1016/0022-4596(90)90110-J
  12. H. J. Goldsmid, Thermoelectric Refreigeration, pp. 1-5, Plenum Press (1964)
  13. N. Murayama and K. Koumoto, Ceramics, 33(3), 161 (1998) (in Japanese)
  14. Y. Masuda, M. Ohta, W.-S. Seo, W. Pitschke and K. Koumoto, J. Solid State Chem., 150, 221 (2000) https://doi.org/10.1006/jssc.1999.8589
  15. N. Naghavi, C. Marcel, L. Dupont, C. Guery, C. Maugy and J. M. Tarascon, Thin Solid Films, 419, 160 (2002) https://doi.org/10.1016/S0040-6090(02)00710-1
  16. Thin Solid Films v.419 N.Naghavi;C.Marcel;L.Dupont;C.Guery;C.Maugy;J.M.Tarascon https://doi.org/10.1016/S0040-6090(02)00710-1

Cited by

  1. Thermoelectric Powder by Gas Atomization Process vol.18, pp.5, 2011, https://doi.org/10.4150/KPMI.2011.18.5.449