DOI QR코드

DOI QR Code

Formation of Vanadium-based Ohmic Contacts to n-GaN

n-GaN/vanadium-based Ohmic 접촉 형성

  • Song, June-O (Department of Materials Science and Engineering, Kwangju Institute of Science and Technology (K-JIST)) ;
  • Leem, Dong-Seok (Department of Materials Science and Engineering, Kwangju Institute of Science and Technology (K-JIST)) ;
  • Kim, Sang-Ho (Department of Materials Science and Engineering, Kwangju Institute of Science and Technology (K-JIST)) ;
  • Seong, Tae-Yeon (Department of Materials Science and Engineering, Kwangju Institute of Science and Technology (K-JIST))
  • 송준오 (광주과학기술원 신소재공학과) ;
  • 임동석 (광주과학기술원 신소재공학과) ;
  • 김상호 (광주과학기술원 신소재공학과) ;
  • 성태연 (광주과학기술원 신소재공학과)
  • Published : 2003.09.01

Abstract

We investigate vanadium (V)-based Ohmic contacts on n-GaN ($N_{d}$=$2.0${\times}$10^{18}$ $cm^{-3}$ ) as a function of annealing temperature. It is shown that the V (60 nm) contacts become Ohmic with specific contact resistances of $10^{-3}$ $- 10^{-4}$$\textrm{cm}^2$ upon annealing at 650 and $850^{\circ}C$. The V(20 nm)/Ti(60 nm)/Au(20 nm)contacts produce very low specific contact resistances of $2.2 ${\times}$ 10^{-5}$ and$ 4.0${\times}$10^{-6}$$\textrm{cm}^2$ when annealed at 650 and $850{\circ}C$, respectively. A comparison shows that the use of the overlayers (Ti/Au) is very effective in improving Ohmic property. Based on the current-voltage measurement, Auger electron spectroscopy, glancing angle X-ray diffraction, and X-ray photoemission spectroscopy results, the possible mechanisms for the annealing temperature dependence of the Ohmic behavior of the V-based contacts are described and discussed.d.

Keywords

References

  1. S. Strite and H. Morkoc, J. Vac. Sci. Technol. B, 10, 1237 (1992) https://doi.org/10.1116/1.585897
  2. S. Nakamura, T. Mukai and M. Senoh, Appl. Phys. Lett., 64, 1687 (1994) https://doi.org/10.1063/1.111832
  3. S. J. Pearton, J. C. Zolper, R. J. Shul and F. Ren, J. Appl. Phys., 86, 1, (1999) https://doi.org/10.1063/1.371145
  4. V. N. Bessolov, M. V. Lebedev, N. M. Binh, M. Friedrich and D. R. Zahn , Semicond. Sci. Tehcnol., 13, 611 (1998) https://doi.org/10.1088/0268-1242/13/6/012
  5. J. S. Jang, S. J. Park and T.-Y.Seong, J. Vac. Sci. Technol. N, 17, 2667 (1999) https://doi.org/10.1116/1.591045
  6. J. L. Lee, J. K. Kim, J. W. Lee, Y. J. Park and T. I. Kim, Solid-State Electron., 43, 435 (1999) https://doi.org/10.1016/S0038-1101(98)00265-2
  7. L. Zhou, W. Lanford, A. T. Ping, I. Adesida, J. W. Yang and A. Khan, Appl. Phys. Lett., 76, 3451 (2000) https://doi.org/10.1063/1.126674
  8. J.-S. Jang, S.-J. Park and T.-Y. Seong, Appl. Phys. Lett., 76, 2898 (2000) https://doi.org/10.1063/1.126510
  9. C.-S. Lee, Y.-J. Lin and C.-T. Lee, Appl. Phys. Lett. 79, 3815 (2001) https://doi.org/10.1063/1.1425065
  10. T. Maeda, Y. Koide and M. Murakami, Appl. Phys. Lett., 75, 4145 (1999) https://doi.org/10.1063/1.125564
  11. J. S. Kwak, K. Y. Lee, J. Y. Han, J. Cho, S. Chae;, .H. Nam and Y. Park, Appl. Phys. Lett. 79, 3254 (2001) https://doi.org/10.1063/1.1419053
  12. V. M. Bermudez, D. D. Koleske and A. E. Wickenden, Appl. Surf. Sci., 126, 69 (1998) https://doi.org/10.1016/S0169-4332(97)00582-5
  13. J. O. Song, S.-J. Park and T.-Y. Seong, Appl. Phys. Lett., 80, 3129 (2002) https://doi.org/10.1063/1.1475773
  14. B. P. Luther, S. E. Mohney, T. N. Jackson, M. A. Khan, Q. Chen and J. W. Yang, Appl. Phys. Lett., 70, 57 (1997) https://doi.org/10.1063/1.119305
  15. M. E. Lin, Z. Ma, F. Y. Huang, Z. F. Fan, L. H. Allen and H. Morkoc, Appl. Phys. Lett., 64, 1003 (1994) https://doi.org/10.1063/1.111961
  16. Z. Fan, S. N. Mohammad, W. Kim, O. Aktas, A. E. Botchkarev and H. Morkoc, Appl. Phys. Lett., 68, 1672 (1996) https://doi.org/10.1063/1.115901
  17. K. O. Schweitz, P. K. Wang, S. E. Mohney and D. Gotthold, Appl. Phys. Lett., 80, 1954 (2002) https://doi.org/10.1063/1.1459768
  18. E. D. Readinger, S. E. Mohney, T. G. Pribicko, J. H. Wang, K. O. Schweitz, U. Chowdhury, M. M. Wong, R. D. Dupuis, M. Pophristic and S. P. Go, Electron. Lett., 38, 1230 (2002) https://doi.org/10.1049/el:20020800
  19. G. K. Reeves and H. B. Harrison, IEEE Electron Device Lett., EDL-3, 111 (1982) https://doi.org/10.1109/EDL.1982.25502
  20. B. P. Luther, S. E. Mohney and T. N. Jackson, Semiconductor Science and Technology, 13, 1322 (1998) https://doi.org/10.1088/0268-1242/13/11/017
  21. J.-S. Jang and T.-Y. Seong, Journal of Applied Physics, 88, 3064 (2000) https://doi.org/10.1063/1.1287236
  22. S. C. Binari, L. B. Rowland, W. Kruppa, G. Kelner, K. Doverspike and D. K. Gaskill, Electron. Lett., 30, 1248 (1994) https://doi.org/10.1049/el:19940833
  23. J. Sun, K. A. Rickert, J. M. Redwing, A. B. Ellis, F. J. Himpsel and T. F. Kuech, Applied Physics Letters, 76, 415 (2000) https://doi.org/10.1063/1.125772
  24. G. Landgren, R. Ludeke, Y. Jugnet, J. F. Morar and F. J. Himpsel, J. Vac. Sci. Technol. 2, 351 (1984) https://doi.org/10.1116/1.582823
  25. J.-S. Jang, C.-W. Lee, S.-J. Park, T.-Y. Seong and I.T. Ferguson, J. Electron. Mater., 31, 903 (2002) https://doi.org/10.1007/s11664-002-0181-9
  26. H.-K. Kim, S. H. Han, T.-Y. Seong and W. K. Choi, Appl. Phys. Lett., 77, 1647 (2000) https://doi.org/10.1063/1.1308527