DOI QR코드

DOI QR Code

Influence of Addition Amount of CaCO3on the Synthesizing behavior and Microstructural Evolution of CaZrO3 and m-ZrO2 in 5ZrSiO4-xCaCO3 Mixture System

5ZrSiO4-xCaCO3 혼합계에서 CaCO3첨가량이 CaZrO3와 m-ZrO2의 합성 및 미세구조변화에 미치는 영향

  • Kim, Jae-Won (Department of Materials Science and Engineering, Changwon National University) ;
  • Lee, Jae-Ean (Department of Materials Science and Engineering, Changwon National University) ;
  • Jo, Chang-Yong (High Temperature Materials Group, Korea Institute of Machinery and Materials) ;
  • Lee, Je-hyun (Department of Materials Science and Engineering, Changwon National University) ;
  • Jung, Yeon-Gil (Department of Materials Science and Engineering, Changwon National University)
  • Published : 2003.09.01

Abstract

Synthesizing behavior and microstructural evolution of $CaZrO_3$and $m-ZrO_2$in a thermal reaction process of $ZrSiO_4$-$xCaCO_3$mixtures, where x is 7 and 19, were investigated to determine the addition amount of CaO in CaO:$ZrO_2$:$SiO_2$ternary composition. CaZrO$_3$-Ca$_2$SiO$_4$precursor prepared by the mixture of $ZrSiO_4$and CaCO$_3$in aqueous suspending media was controlled to the acidic (pH=4.0) condition with HCI solution to enhance the thermal reaction. The addition amount of dispersant into the $ZrSiO_4$-$xCaCO_3$slip increased with increasing mole ratio of $CaCO_3$, which was associated with the viscosity of slip. Decarbonation reaction was activated with an increase of the addition amount of $CaCO_3$, showing different final temperatures in $ZrSiO_4$-$7CaCO_3$and $ZrSiO_4$-$19CaCO_3$mixtures as about 980 and 116$0^{\circ}C$, respectively, for finishing decarbonation reaction. The grain morphology was changed to spherical shape for all samples with an increase of sintering temperature. The grain size and phase composition of the synthesized composites depended on the mixture ratio of Zrsi04 and CacO3 powders, indicating that the main crystals were m-ZrO2 ($\leq$3 $\mu\textrm{m}$) and $CaZrO_3$ ($\leq$ 7 $\mu\textrm{m}$) in $ZrSiO_4$$>-7CaCO_3$and $ZrSiO_4$-$19CaCO_3$mixtures, respectively.

Keywords

References

  1. H. Nagayama, Tetsu To Hagane, 63(10), 1643 (1997)
  2. E. Yokoyama and H. Ooi, Tetsu To Hagane, 56(6), 454 (1969)
  3. E. Generali, G. Baldi, A. M. Ferrari, C. Leonelli, T. Manfredini, C. Siligardi and G. C. Pellacani, Ceramica Informazione No. 358, Faenza Editrice, Faenza (Italy), 1996, p. 16
  4. J. Z. Liang, C. Y. Tang, R. K. Y. Li and T. T. Wong, Metals and Mater., 4(4), 616 (1998) https://doi.org/10.1007/BF03026368
  5. S. Dash, M. Kamruddin, P. K. Ajikumar, A. K. Tyagi and B. Raj, Thermochim. Acta.,363, 129 (2000) https://doi.org/10.1016/S0040-6031(00)00604-3
  6. S. Hashimoto, A. Yamaguchi and S. I. Oya, J. Cryst. Growth., 169, 376 (1996) https://doi.org/10.1016/S0022-0248(96)00402-2
  7. R. S. Roth, J. R. Dnnis and H. F. McMurdie, Phase Diagrams for Ceramists Vol 1, The American Ceramic Society, Inc., Columbus, Ohio, 1993, p. 231
  8. M.H. Qureshi and N.H. Bretti, Science of Ceramics, 4th Joint Meeting with The Netherlands Ceramic Society (1967), ed. M.H. Qureshi and N.H. Bretti
  9. Trans. Brit. Ceram. Soc., 67, 205 (1968)
  10. O.Gul'ko and R.A. Kordyuk, Dokl. Adad. Nauk SSSR, 142, 639-64 Chem. Tech. Section. Transl., (1962) pp. 6-7
  11. J. W. Kim, J. E. Lee, Y. G. Jung, C.Y. Jo, J.H. Lee and U. Paik, J. Mater. Res., 18(1), 81 (2003) https://doi.org/10.1557/JMR.2003.0012
  12. A. Einstein, Investigation on the theory of Brownian Motion, Matheun Publisher, London, 1986
  13. P.L. Fullman, Measurement of particle sizes in opaque bodies, Tans AIME 197 (1953) pp. 447-452
  14. A. Roosen and H.K. Bowen, J. Am. Ceram. Soc., 71(111), 970 (1998) https://doi.org/10.1111/j.1151-2916.1988.tb07567.x
  15. A.M. Mulokozi and E. Lugwisha, Thermochim. Acta, 194, 375 (1992) https://doi.org/10.1016/0040-6031(92)80034-T
  16. M. Maciejewski and J. Baldyaga, Thermochim. Acta., 92, 105 (1985) https://doi.org/10.1016/0040-6031(85)85828-7
  17. J.M. Criado and A. Ortega, Thermochim. Acta., 195 163 (1992) https://doi.org/10.1016/0040-6031(92)80059-6
  18. D. Price, N. Fatemi, D. Dollimore and R. Whitehead, Thermochim. Acta, 94, 313 (1985) https://doi.org/10.1016/0040-6031(85)85275-8
  19. N.D. Topor, L.I. Tolokonnikova and B.M. Kadenatsi, J. Thermal. Anal., 207, 245 (1981)
  20. J. Peric, R. Kristulovic, J. Ferie and M. Vacak, Thermochim. Acta., 207, 245 (1992) https://doi.org/10.1016/0040-6031(92)80140-R
  21. J.B. Dubrawski and B.M. England, J. Thermal. Anal., 39, 987 (1993)
  22. Y. Wang and W.J. Thomson, Thermochimica Acta., 225, 383-390 (1995) https://doi.org/10.1016/0040-6031(94)02151-D
  23. W.D. Kingery, H.K. Bowen and D.R. Uhlmann, Int. to Ceramics, 2'nd ed., John Wiley & Sons (New York), Chapter 9
  24. Langmuir, J. Am. Chem. Soc., 38, 2263 (1916)
  25. B.O. Mysen, Phase Diagrams for Ceramists, National Institute of Standards and Technology, The American Ceramic Soc., 8, 188 (1990)
  26. Y. Shi, X.X. Huang and D.S. Yen, Ceram. Int., 23(5), 457 (1997) https://doi.org/10.1016/S0272-8842(96)00057-0
  27. W.D. Keyser, R.L. Wollast, P. Hansen and G. Naessens, International Symp. Reactivity Solids, 5th, Munich (1964) pp. 658-666
  28. J. Ewing, D. Beruto and A.W. Search, J. Am. Ceram. Soc., 62, 580 (1979) https://doi.org/10.1111/j.1151-2916.1979.tb12736.x