DOI QR코드

DOI QR Code

A Study on the Fabrication of STS 316L Films by Ion Beam Deposition with Ion Source

이온빔 보조 증착법을 이용한 STS 316L 박막 합성에 관한 연구

  • Lee, J.H. (Department of materials engineering, Hankuk Aviation University) ;
  • Song, Y.S. (Department of materials engineering, Hankuk Aviation University) ;
  • Lee, K.H. (Surface Engineering Department, KIMM) ;
  • Lee, K.H. (Surface Engineering Department, KIMM) ;
  • Lee, D.Y. (Department of materials information, Daelim college) ;
  • Yoon, J.K. (Department of electronic technology and standards, ATS)
  • 이준희 (한국항공대학교 재료공학과) ;
  • 송요승 (한국항공대학교 재료공학과) ;
  • 이건환 (한국기계연구원 표면연구부) ;
  • 이구현 (한국기계연구원 표면연구부) ;
  • 이득용 (대림대학교 정보재료공학과) ;
  • 윤종구 (기술표준원 전자거래표준과)
  • Published : 2003.09.01

Abstract

The thin films of 316L stainless steel were made on glass and S45C substrate by Ion beam assisted deposition with reactive atmosphere of argon and nitrogen. The films were deposited at the various conditions of ion beam power and the ratios of Ar/$N_2$gas. Properties of these films were analyzed by glancing x-ray diffraction method(GXRD), AES, potentiodynamic test, and salt spray test. The results of GXRD showed that austenite phase could be appeared by $N_2$ion beam treatment and the amount of austenite phase increased with the amount of nitrogen gas. The films without plasma ion source treatment had the weak diffraction peak of ferrite phase. But under the Ar plasma ion beam treatment, the strong diffraction peaks of ferrite phase were appeared and the grain size was increased from 12 to 16 nm. Potentiodynamic polarization test and salt spray test indicated that the corrosion properties of the STS 316L films with nitrogen ion source treatment were better than bulk STS 316L steel and STS 316L films with Ar ion source treatment.

Keywords

References

  1. D. M. Mattox, 'Film deposition using accelerated ions', Electrochemica Technology., 2, 295 (1964)
  2. S. D. Dahlgren, Metall. Trans., 1, 3095 (1970)
  3. J. Koskinen, P. Torri, J. ol. P. Hirronen, A. Mahiout and A. Stanishevsky, Surf. & Coat. Technol., 80, 57 (1997) https://doi.org/10.1016/0257-8972(95)02685-1
  4. P. Gutier, A. Darbeida, A. Billard, C. Frantz and J. van Stebut, Surf. & Coat. Technol., 114, 148 (1999) https://doi.org/10.1016/S0257-8972(99)00041-9
  5. B. A. Shedden, F. N. Kaul, M. Saman and B. Window, Surf. & Coat. Technol., 97, 102 (1997) https://doi.org/10.1016/S0257-8972(97)00138-2
  6. A. Bourjot, M. Foos and C. Frantz, in Proc. Int. Conf. Plasma Surface Engineering, vol. 2, DGM Informationsgesellschaft, Oberurserl, FRG, (1989) pp.777-784
  7. A. Rechsteiner and M. Speidel, Proc. Of the 1st European Stainless Steel Conference, Florence, 2, 107 (1997)
  8. Y. J. Mao, B. Y. Jiang, C. X. Ren, X. H. Liu and S. C. Zou, Nuclear Instruments and Methods in Physics Research, B 135, 492 (1998) https://doi.org/10.1016/S0168-583X(97)00655-1
  9. W. Ensinger and K. Volz, Materials Science and Engineering, A253, 234 (1998) https://doi.org/10.1016/S0921-5093(98)00731-X
  10. M. Samandi, B. A. Shedden, D. I. Smith, G. A. Collins and R. Hutchings, J. Tendys, Surf. Coat. Technol., 59, 261 (1993) https://doi.org/10.1016/0257-8972(93)90094-5
  11. M. K. Lei and Z. L. Zhang, J. Vac. Sci. Technol., A15, 421 (1997) https://doi.org/10.1116/1.580501
  12. D. L. Williamson, J. A. Davis, P. J. Wilbur, J. J. Vajo, R. Wei and J. N. Matosian, Nucl. Instrum. Methods phys. Res., B127/128, 930 (1997), And references therein https://doi.org/10.1016/S0168-583X(97)00033-5
  13. W. Moller, S. Parascandola, T. Telbizova, R. Gunzel and E. Richter, Surf. Coat. Technol., 136, 73 (2001) https://doi.org/10.1016/S0257-8972(00)01015-X
  14. M. O. Speidel and R. M. Pedrazzoli, Mater. Perform., September, 59 (1992)
  15. R. Lagneborg, proc. Int. Conf. on Stainless Steels, China, June, 10-13 (1991), 1, 11 (1991)