g HWX @ XSAIAHR 2k 2002, Vol 13, No. 4, pp. 486-490

Software Reliability Assessment with Fuzzy Least Squares
Support Vector Machine Regressionl)

Changha Hwang - Dug Hun Hong - Jang Han Kim
Department of Statistical Information, Catholic University of Daegu
School of Mechanical and Automotive Engineering, Catholic University of Daegu
Department of Statistics, Keimyung University

ABSTRACT

Software quality models can predict the risk of faults in the software early enough for cost-effective prevention of
problems. This paper introduces a least squares support vector machine (LS-SVM) as a fuzzy regression method for
predicting fault ranges in the software under development. This LS-SVM deals with the fuzzy data with crisp inputs
and fuzzy output. Predicting the exact number of bugs in software is often not necessary. This LS-SVM can predict
the interval that the number of faults of the program at each session falls into with a certain possibility. A case

study on software reliability problem is used to illustrate the usefulness of this LS-SVM.

Key Words :

1. Introduction

Society 1s becoming quite dependent on computer-
based systems. Today, computers are embedded in
wristwatches, vending machines, factory equipment,
automobiles and aircraft. A failure in a computer-based
system that controls critical applications may lead to
significant economic losses or even the loss of human
lives. The causes of failures in computer-based systems
are manifold: physical faults, maintenance errors, design
and implementations mistakes resulting in hardware or
software defects, and user or operator mistakes. Here, in
particular we focus on software faults. Recent advances
in communication technology have led to a rapid
proliferation of distributed systems. For example, a
cluster of servers provided Web coverage of the 2002
Korea-Japan World Cup Football Games. As distributed
systems evolve from the special case to commonplace,
ensuring their reliable operation has emerged as an
important and challenging problem. In spite of extensive
testing and debugging, software faults persist even in
commercial grade software. Many distributed systems,
especially those employed in safety-critical environments,
should be able to operate properly even in the presence
of software faults. Hence, predicting software faults is
very important in software engineering.

Hedn 20084 18 2Y
fEUxt 20030 48 (42

2 A7E 2003SEE HTIME ST ek Pu|of
olsh xwrELCh

1) This research is supported by Catholic University of
Daegu grant 2003.

486

Least squares support vector machine (LS-SVM), Triangular membership function, Software reliability

Predicting the exact number of bugs in each software
is often not necessary. Previous research has focused on
classification models to identify fault-prone and not
fault-prone softwares. See for details Khoshgoftaar et al.
[3]. However, available information is often uncertain,
imprecise and incomplete, Before software reliability
problems become evident, it is difficult to choose an
appropriate definition of fault-prone at the time of
modeling. In such cases, predicting the range of the
numbers of faults or bugs is more appropriate. A
predicted interval consists of the possible minimum and
maximum numbers of faults in the softwares. A
software manager might use this information to allocate
testing efforts more effectively.

Recently, Xu et al {8] and D’Urso and Gastaldi [1]
have dealt with predicting software faults or bugs using
fuzzy nonlinear regression based on neural networks and
parametric polynomial model, respectively. Hong and
Hwang [2] has proposed the fuzzy nonlinear regression
model based on standard support vector machine (SVM)
[7]. We can apply this model to such software reliability
problems. In this paper we propose much simpler model
than previous models.

The rest of this paper is organized as follows. Section
2 illustrates the LS-SVM [5, 6] regression procedures
for fuzzy multivariate linear and nonlinear models.
Section 3 briefly describes some parameter selection
methods. Section 4 gives illustrative example. Section 5
gives some conclusions.

2. LS-SVM for Fuzzy Regression

In this section we will modify the underlying idea of



Software Reliability Assessment with Fuzzy Least Squares Support Vector Machine Regression

LS-SVM for the purpose of deriving the convex
optimization problems for multivariate fuzzy linear and
nonlinear regression models for crisp inputs and fuzzy
output. The basic idea of LS-SVM gives computational
efficiency in finding solutions of fuzzy regression models
particularly for multivariate case. We will focus on fuzzy
regression models based on triangular fuzzy number
since this type of fuzzy number is mostly used in
practice. Fuzzy regression models based on trapezoidal
and Gaussian fuzzy numbers can be constructed in a
similar manner.

To do this we need some preliminaries. Let
X={(m,a,B) be a triangular fuzzy numbers when m is
the model value of X and & and B are the left and
right spreads, respectively. If a=p8, we can write
X=(m,a). On the space T(R) of all triangular fuzzy
numbers we use the metric d defined by

(X, V)=(mx—my)+((mx—ax)— (my—ay))*
+((mx+ ﬂx)_(my‘_" ﬂy))z

where X=(myx,ax, Bx) and Y={(my,ay, fy) are any
two vectors of tdangular fuzzy numbers in 7(R). A
linear structure is defined on T(R) by

(my, ax, Bx) +(my, ay, By)

= (mx+my,ax+ay, Bx+ By)
t(m, a,B) = (tm,ta,tp) if t=0 and
tim, a,B)=(tm, 16, ta) if t£0.

Now, we will study LS-SVM to be used in estimating
fuzzy linear regression model. Suppose we are given
training data {(x, Y;), i

%2 RY and the output Y;= T(R). Let x;; be element

-,n}, with each input

of x;. Then, we assume x ;=0 by simple translation of
all vectors. Let W= (W, W, -, W,), where W,=
aw,Bw), aw,Bw=0,i=1,--,d and let

Bs), a@p Bz=0. We now consider the following model:

(m W,s

B=(m3, ag,

M: f(x) =B+ W, x>
(BeT(R), We T(R)", x=R")
=B+ Vlel+ VVQX2++ VVd?Cd

where T(R)? is the set of d-vectors of triangular
fuzzy numbers.

m W, )ty
a W,,)t and Bw :(BBrBVV}, Tty
the ¢ denotes the transpose of matrix. Then, defining

We reexpress my = (mg, my, ", ay =

(ag, aw, -, BWd)t, where

the norm of W

TWI2 =1 mypl®+ 1 my—awl?

’

+1 my+ Byl

we arrive at the following fuzzy LS-SVM learning
procedure for model M as follows:

Fiwe s gde
Liwit+ & 33 é

minimize
my =< my, x; >t mpt &y,
my—ay, =< my, x;>tmg
subject to — aw, x;>—ap+ &y,

my,.“}‘ﬂy‘,: < mW,x,->+mB
+< Bw, x; >+ Bpt+ &y

Here, the parameter C is a positive real constant and
should be considered as a tuning parameter in the
algorithm. This controls the smoothness and degree of
fit. The cost function with squared error and
regularization corresponds to a form of ridge regression.

Introducing Lagrange multipliers and a3,

= 1’...,

@y, @y

n, we construct a Lagrange function as follows:

r=Liwir+ £ 3 4
- ,21”11'« my, x;>+mpt &, —my,)
— Dan( my, 20+ mp—C aw, 1,
—apt&yu—(m y_a’y,))
— a5 my, x4 mpt< By, %,

+Bp+ 52:‘"(’” Y,+5y,-))

Then, the conditions for optimality are given by

m—0—>3mwhﬂw+ﬂw— ﬁ 20’}”1:

—=0*> Z Zaki=0

gi‘w—0—> My — Ay = 2a2,x,
WB—Oﬂ 20'2,

oL _ 4 _ .
aBW“O mW+BW Z‘QSIxz

3183 2“31*0

oL _ . _, .:akz .
35/”'_0 E i , k=1,2,3, .
a(?L =0“’< mW,xi>+mB+El,‘=my_
ay; . !
oL _

day; =0

=< my, x;>+mp—< aw, x;>—agt &y
=my—ay, i=1,"",n

_oL _

(903,' _0

— < my, X; >+ mB-l—( Bw, xi>+[5’3+ 52,'

:me‘*‘By,, i=1,-'-,n

487



HX| 9 XsAA-ESE =X 2003, Vol. 13, No. 4

with solutions

my = Z:]auxi. Ay = gl(au_a’m')xfy
Bw= Z‘(afii—ali)xi

and
0 0 0 1’ 1’ 1° my
0 0 0 0° 1 0° ag
00 0 o0 0’ 1’ Br
10 00+51 0 0 a,
_ 1 a2
1-10 (0] 2+ CI 0 a,
1
[1 01 e 0 Q+CI
0
0
_ 0
my
my— ady
my+ By
with
my=(7ﬂy,,"-,mn)', Qyz(ayl,"',a'y,‘)ty
By=(By, . By,), ar=C(ay,, an),
02:(021,"',02n)t, 113:(031,“‘,613")[7

0=(0,--,00", 1=(1,, 1), mxwm zero matrix O,

nxn identity matrix I and #x#n matrix £ of
;=<x;, x;>. Here, the ¢ denotes the traspose of
matrix.

Hence, the prediction Y= (my,ay, By) given by the

LS-SVM procedure on the new unlabeled example x is

( Z{a“(x,-,x) +mzg, Zl(al,-— 23;){x;, %>

+ag, 21(0'3,'_ 1) <x;, x> +Bp).

Next, we will study LS~-SVM to be used in estimating
fuzzy nonlinear regression model. In contrast to fuzzy
linear regression, there have been only a few articles on
fuzzy nonlinear regression. In this paper we treat fuzzy
nonlinear regression for data of the form with numericat
inputs and fuzzy output, without assuming the
underlying model function. In the case where a linear
regression function is inappropriate LS-SVM makes
algorithm nonlinear. How can the above methods be
generalized to the case where the regression function is
not a linear function of the data? This could be achieved
by simply preprocessing input patterns x; by a map

®: R° —>FE into some feature space E and then
applying LS-SVM regression algorithm. This is an
astonishingly straightforward way.

First notice that the only way in which the data
appears in the training problem is in the form of dot
products < x; x;> . The algorithm would only depend on

the data through dot products in E, ie. on functions of

488

the form <@ (x;), ®(x;)> . Hence it suffices to know
and use K(x; x;)=<0(x;), ®(x;)> instead of O(-)
explicitly. The only difference between LS5-SVMs for
linear and nonlinear function estimations is the use of
mapping function @. The well used kemels for
regression problem are given below.

_dx=yl®

K(x,9) = (z'y+1), Kx,y)=e

Here, p and ¢ are kemnel parameters. The kernel
approach is again employed to address the curse of
dimensionality. In final, the fuzzy nonlinear LS-SVM
regression solution is given by

(glal,«K(x,-, x)+mg, gl(al,-—az,»)mx,-, x)+ag,

,21((13"_ 0’1,‘) K(x,-, x)+BB)

3. Model Selection Method

When we use LS-SVM for fuzzy linear regression, we
still have to determine an optimal choice of the
regularization parameter C. In particular, when we use
this algorithm for fuzzy nonlinear regression, we have to
determine one more parameter, which is the polynomial
degree p and the kernel width ¢ for polynomial and
Gaussian kernels, respectively. There could be several
parameter selection methods such as cross-validation
type methods, bootstraping and Bayesian learning
methods. In this paper we use cross—validation methods.
If data is not scarce then the set of available
input-output measurements can be divided into two parts
- one part for training and one part for testing. In this
way several different models, all trained on the training
set, can be compared on the test set. This is the basic
form of cross-validation. A better method is to partition
the original set in several different ways and to compute
an average score over the different partitions. In this
paper the average score is computed by using the
squared error based on the following distance

X,V :(mx_my)2+ ((mx—a'x)—(my“a'y))z
+ ((my+ Bx) — (my+ By))? '

An extreme variant of this is to split the =
measurements into a training set of size #—1 and a
test set of size 1 and average the squared error on the
left-out measurements over the = possible ways of
obtaining such a partition. This is called leave-one-out
(LOO) or 1-fold cross-validation. In the LOO method,
we train using all but one training measurement, then
test using the left out measurement. We repeat this,
leaving out another single measurement. We do this until
we have left out each example. Then we average the
results on the left out measurements to assess the



Software Reliability Assessment with Fuzzy Least Squares Support Vector Machine Regression

generalization capability of our fuzzy regression
procedure.
LOO is computationally more demanding. The

advantage is that all the data can be used for training -
none has to be held back in a separate test set. For
large data sets we typically prefer 10-fold
cross—validation in order to select regularization and
kernel parameters. The LOO for linear models can be
calculated analytically, but is slightly awkward to handle.
See for details Orr [4]. Its cousin, generalized
cross—validation (GCV), is more convenient. The
similarity of GCV to LOO cross-validation is apparent.
Performance for small samples is different for two
criteria. However, performance for large samples is
approximately the same for two criteria. For fuzzy linear
and nonlinear models in ths paper we can use the
following GCV criterion.

GCv Zﬁ[zg(mx—rﬁy,)z
(=)
+ ZI((mx—ay,)—(r@y,—?zy,))z
+ g‘((my,‘kﬁy,)_(;ﬁyl‘kﬁyx))z

where my, @y and By are the fitted values of
my, ay, and By, respectively and £ is the effective

number of parameters. See Orr [4] for details on how to
compute k for linear model, and Vapnik [7] for nonlinear
model.

4. Empirical Study

We study a dataset which comes from D’'Urso and
Gastaldi [1] for a real case study, carried out during the
development of a sophisticated software system for
running a virtual mall, i.e., a mall on the Internet on an
http server (http is the hypertext protocol used for
exchanging data on the Internet). The work of
programmers was paralleled by a team formed by seven
beta-testers, ie., individuals whose job was that of
testing the program functionality, and of finding possible
bugs in the software under development. For all the
course of the software development, which took 30
months, the team of beta-testers produced comprehen-
sive monthly reports. In each monthly report, along with
the analytical scores attributed to specific aspects of the
program under development (such as interface usability,
accessibility, credit card transactions security, help
system, program reliability, etc.), the team also provided
an average global score expressed as a fuzzy number,
based on the aggregation (through a weighted average)
of the single scores. Such average global scores are
reported in Table 1, and are used in the following for the
purpose of providing an application of our procedure (the
software company made these data available provided

their origin remained undisclosed).

It is interesting to note that these data are not
monotonic, due to occasional falls of reliability evaluation
caused by the discovery of (more or less important)
malfunctions or bugs. We wished to find a model which
could describe the fuzzy evaluations of the reliability and
functionality of the software under development.

D'Urso and Gastaldi [1] use the fourth-order polyno-
mial model. For this particular dataset the fourth-order
model succeeded in capturing the "bug-discovery phase”,
where the beta-testers substantially lowered their
grades. Observe that their procedure indicated to choose
the polynomial model of the fourth order, which correctly
identifies, in the software development process, a period
(after around one year) when there was a reengineering
of part of the program which had serious problems with
the Internet communication protocols. However, their
polynomial model is somewhat impractical since it is
basically univariate parametric model which can be
seldom used in fitting models with several inputs in
practice.

Table 1. Fuzzy Data for Software Reliability Assessment

Test Left Right | Test Left Right
Session Center Spread Spread |Session Center Spread Spread
1 6 2 8 16 10 4 3
2 5 3 6 17 12 6 8
3 8 5 8 18 13 3 9
4 10 9 9 19 20 6 7
5 13 9 8 20 28 7 9
6 19 5 7 21 29 8 9
7 20 8 5 22 30 4 7
8 23 9 5 23 35 2 3
9 25 5 7 24 44 3 5
10 27 6 3 25 45 6 6
11 26 7 6 26 43 5 4
12 25 4 6 27 47 3 9
13 5 3 3 28 48 4 5
14 8 5 3 29 50 6 4
15 9 7 8 30 49 5 4

40
30 .
.

20

Fig. 1. Fuzzy LS-SVM Regression

For this dataset the fuzzy nonlinear regression model
by Xu et al. [8] can be utilized. Their procedure can be

489



HX| @ X sA LSS

=

==X 2003, Vol. 13, No. 4

also implemented in the case where several inputs are
used and there is no information on the underlying model
at all. However, their model is rather complicated to
implement in practice since this method uses two
separate neural networks for left and right spreads and
has to make neural networks to keep the relationship
between left and right spreads.

We have used LOO cross-validation to determine an
optimal combination of C and ¢, which are C= 130
and o=4.0. As seen from Figure 1, we observe that
our LS-SVM succeeded in capturing the "bug-discovery
phase” and correctly identifies, in the software
development process, a period (after around one year)
when there was a reengineering of part of the program

which had serious problems with the Internet
communication protocols. )
For future research we need to show the

outperformance of our LS-SVM over procedures by
D'Urso and Gastaldi [1] and Xu et al. [8] for complex
data sets with several inputs as in Xu et al. [8].

5. Conclusions

High reliability is an important attribute for high
assurance software systems. Consequently, software
developers are seeking ways to forecast and improve
quality before release. Because many quality factors
cannot be measured until after software becomes
operational, software quality models are developed to
predict quality factors based on measurements that can
be collected earlier in the life cycle.

Due to the incomplete information in the early life
cycle of software development, a software quality model
with fuzzy characteristics can perform better, because
fuzzy concepts deal with phenomena that are vague in
nature. LS-SVM derives the satisfying solutions and is
attractive approach to predicting bugs ranges in the
software under development.

The algorithms combine generalization control with a
technique to address the curse of dimmensionality. The
main formulation results in solving a simple matrix
inversion problem instead of solving a global quadratic
optimization problem with box constraints unlike SVM in
Hong and Hwang [2]. Hence, this is not a
computationally expensive way. The hyperparameters of
the proposed algorithm were tuned using LOO
cross-validation or GCV procedure and a grid search
mechanism.

References
(1] P. D’Urso and T. Gastaldi, "An orderwise polynomial
regression procedure for fuzzy data,” Fuzzy Sets

and Systems, Vol. 130, pp. 1-19, 2002.
[21 D. H Hong and C. Hwang, "Support vector fuzzy

490

regression machines,” to be appeared in Fuzzy
Sets and Systems, 2003.

{31 T. M. Khoshgoftaar, E. B. Allen, R. Halstead and
G. P. Trio, "Detection of fault-prone software
modules during a spiral life cycle” In
Proceedings of the International Conference on
Software Maintenance, pp. 69-76, Monterey, CA,
November 1996. IEEE Computer Society.

[4]1 M. J. L. Orr, "Introduction to radial basis function
networks,” Centre for Cognitive Science Technical
Report, U. of Edinburgh, 1996.

[5] J. A. K. Suykens and ]J. Vandewalle, "Recurrent
least squares support vector machines,” IEEE
Transactions on Circuits and Systems-1, Vol. 47,
No. 7, pp. 1109-1114, 2000.

[6] J. A. K. Suykens, "Nonlinear modelling and
support vector machines,” Proc. of the IEEE
International Conference on Instrumentation and
Measurement Technology, pp. 287-294, 2001.

[7]1 V. N. Vapnik, "Statistical Learning Theory,” John
Wiley & Sons, New York, 1998.

[8] Z. Xu, T. M. Khoshgoftaar and E. B. Allen,
"Prediction of software faults wusing {fuzzy
nonlinear regression modeling,” In Proceedings:
Fifth IEEE  International Symposium  on
High-Assurance Systems Engineering,
Albuquerque, New Mexico USA, November 2000.
IEEE Computer Society.

X XA
3‘5;::-1'3]
A12 A6 8 FZ2
2H&st
1978~1982 A&t Apaist $8 w3t (84h
1982~1984 A2 ulstw dig AMEATH EAstA-3(H
b

1985~1987 st=154 AT

1987~1991 W= Michigan thatx S A3} (2A}
1992~199% Zddstn AL A 2ne

1995~ @7 F7tEL U AREA Y Ll

HAY 2ok @ ARAT, wE-HA A", 7)AE, YA



