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Abstract

This paper we study the exact controllability for the nonlinear fuzzy control system in Ex by using the concept of

fuzzy number of dimension #» whose values are normal, convex, upper semicontinuous and compactly supported

surface in R".
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1. Introduction

Many authors have studied several concepts of fuzzy
systems. Kaleva [3] studied the existence and uniqueness
of solution for the fuzzy differential equation on E”
where E” is normal, convex, upper semicontinuous and
compactly supported fuzzy sets in R". Seikkala [5)
proved the existence and uniqueness of fuzzy solution for
the following equation:

[o'c(t)=f(t,x(t)),
x(0)=x0,
where f is a continuous mapping from R"xR into

R and x, is a fuzzy number in E'. Diamond and

Kloeden [2] proved the fuzzy optimal control for the
following system:

2(D=a(Dx(D+ u(D,
[ %(0) = x

where «(-), w(+) are nonempty compact interval-
valued functions on E'.

We consider the exact controllability for the following
nonlinear fuzzy control system:
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x(D=alDx (D + (¢, x(D),
2(0) = x,,

(F.CS)

where a: [0, T1— Ex is fuzzy coefficient, initial value
x€Ey and f:[0, TIXEy— Ex is nonlinear function
and u(¢) eEY is control function.

Let Ex be the set of all fuzzy numbers in R” with
s X -
For example, E% be the set of all fuzzy pyramidal

edges having bases parallel to axis X, -

with edges having rectangular bases
and X, [4]

numbers in R®
parallel to the axis X,

2. Properties of fuzzy numbers

In this section, we give some definitions, properties
and notations of the fuzzy number of dimension # .

Definition 2.1. We consider a fuzzy graph GCR" that
is a functional fuzzy relation in R” such that its mem-
bership function
pelxy, =, 2 €l0,1], (xy, -, 2)=R" has the fol-
lowing properties:
1. For all x,€eR, (i=1,-,n),
te(xy, o, %5, 00, %,) €10,1]

is a convex membership function.
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2. For all e=(0,11,
{((xy, 2D ER" pelxy, =, x,) = a}

is a convex set.
3. There exists (x;, -, x,)ER",

/‘G(xl s Ty xn)=1 .

If the above conditions are satisfied, the fuzzy'subset
G is called a fuzzy number of dimension # .
The first projection of G is

V w261, o x) = 0, (1),
the second projection of G is
V by, g, oxn) H6EEL T X)) = gt a,(X2)
and the ¢ -th projection of Gis
V ey oo ed H6(0 0, 2) = 1 a0),

(i=3, . %) .
We denote by fuzzy number in
EI’:/ A: (d], as, .“)an) ’
to axis X; (i=1,

where a; is projection of A

-+, m) , respectively.
And a; (i=1, -, n) is fuzzy number in R.

Definition 2.2. The « -level set of fuzzy number in
E} is defined by

[Al°={(x,, ., x ) ER" (%), . x)& le[di]a},

where notation [] is the Cartesian product of sets.

Definition 23. Let A and B in Ejy, for all
a<s(0,1],

(2.1) A= Bs[Al°=I[B]°

2.2) [A%,B1°= Tlaxb1°,

where *, is operation in Ey and * is operation in
Ey.

Definition 2.4. The derivative x'(#) of a fuzzy process
x<=Ex is defined by

[x(9]17= T (x%) (), (%) (D], 0<a<]

=1
provided that is equation defines a fuzzy x (H=Ey .

b
The fuzzy integral fa x(Ddt, a, bel is defined by

[ xoan= TIL [ #oar, [ x4(nar)

provided that the Lebesgue integrals on the right
exist.
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Let ]n[l[af]", 0<a<1, be a given family of nonemp-

ty areas.
It
@3 I ialc Ilal® for 0<a<g1 and
@4 I timla1®= I lan”

Whenevér (a,) is a nondecreasing sequence converg-
ing to e=(0,1], then the family

I:[l[al-]", 0<a<1, represents the a-level sets of a
fuzzy number A€E}.
Conversely, if tljl[a,-]”, 0<a<l, are the a -level

sets of a fuzzy number in R”, then the conditions (2.3)
and (2.4) hold true.
We define the metric do on Ejy.

Definition 25. Let A, BEE}.

dw(A, B)= sup{dp([A]°,[B]*):2=(0,1]}

= sup{du [1[a", TI[61%): a=(0.11)

= sup{@l(dﬁ([ag L [69": 2= (0,1])

where dy is the Hausdorff distance.
The supremum metric H on C([0, T]: ER)
is defined by

H(x,y)= sup{d (x(D, y()): t=[0, T1}

for all x, y=C(0, T:ER) .

3. The exact controllability

In this section, we show the exact controllability for
the following nonlinear fuzzy control system:

x(8) = a(x () + At, x(1)),
(F.CS)
x(0) = x,,
a: [0, T]— E%, initial value

xo€ EY, control #«:[0, T]—E} and

with fuzzy coefficient

inhomogeneous term f:[0, T] x Ej— Ex

satisfies a global Lipschitz condition.

The (F.C.S.) is related to the following fuzzy integral
system:

()= S(Dxo+ fotS(t—s)f(s,x(s))ds
(F.IS.) ‘ + fOtS(t— Dauls)ds.

x(0)=x €Ey,



where S(#H 1is fuzzy number of dimension » and

(5017 = ML s:017= T [5%#, S%(0]

t
where S%(#) is exp{foa"l(s)ds}and S%(D is

t
exp { fo a’(s)ds} . SUH (=1, is continuous. That
is, there exists a constant ¢>0 such  that

| S%# | <c for all (0, 7] .

Definition 3.1. The (F1S.) is exact controllable if, there
exists #(#H such that the fuzzy solution x(# of (F.IS.)
satisfies

D=,z (ie,

(D)= [ La(D17= T 1GHI =121

where x! is target set.

We assume that the following linear fuzzy control
system with respect to nonlinear fuzzy control system
(F.C.S.):

x()=a(Dx()+u(d) ,
(F.CS. 1)[
x(O) =Xy EE;‘V

is exact controllable. Then
T
(1) = S(Dxy + fo S(T— Duls)ds= , «"

and

[x(T))°

= M s(DG@) .+ [ S(T—u(as]°

= TLISUD )Yt [ SUT—9uk 9,
SUD @)+ [ SUT—u ) dd

= TL1EH%, H35I=1217

Defined the fuzzy mapping & P(R™—E} by

T R
. fo S T—9)us)ds, »CT,,
g (v)=[
0, otherwise.
Then there exists

g, P(R—Ey(i=1,2, -, n) such that

['s(r-90(9ds, (9T,

~a
£i (Ui):[
0, otherwise
where u; is projection of « to axis X;, (i=1
n) respectively and
there exists g, (=147

Ey &2 vujdd x| MojAl 2ol gt Mojotsd

~ a T

g (0= [ SUT-vils)ds,
v eluy(s), u'(s)],

~ a T

£ir (Uir)zj[; Sa,',(T_S)U,',(S)dS,

vl elulls), ui(s)].

We assume that g;°, g,  are bijective mappings.
Hence a-level of wu(s) are

[ 917= T (91°= [L1%(9), w4(9)]
1 259 710@H5—SUD @)%,
(&4 7D = S5 (x0) W1
Thus we can be introduced u(s) of nonlinear system

(1= lu(917= [TTu(9), w3(9)]
TILC 2.9 70GH5—SUD ()Y
— [ SUT=9 s 2N,

C 45 THEDS— S5 ()%
~ [ ST 975,20 ),

Then substituting this expression into the (F.IS.)

yields « -level of x(7). For each i=1, ---, n,

5 (D)

= [SUD @)Y+ [ SUT—9)7s x5 ds
+[TSUT=9C &5 D= SUD )%
~ [T SUT= 9745, () sy,
SUD )+ [ SUT— 975, 2% (s
+[ISUT=9( 24 (%= SUD ()
— [T 9 il 2% () dds

= [D% HHI=1EH A

Therefore

(D1 = I (D= T 1EHI=12e.

=]

We now set
(0x)(D) =, S(hx+ | "S(t— 9 As, 1)) ds
+f0tS(t—s) 57N = S(T)xg

- TS(T— 9Rs, x(s)) d)ds .
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where the fuzzy mappings §»1 satisfied above
statements.

Notice that (@x)(7)=,x', which means that the
control z(f steers the (F.C.S.) from the origine to x!
in time 7T provided we can obtain a fixed point of the
operator @.

Assume that the following hypotheses:

(H1) (F.C.S. 1) is exact controllable.

(H2) Inhomogeneous term £: [0, 71 X Ex— E%
satisfies a global Lipschitz condition, there exists a
finite constant %;>0 such that

dy ([f; (s, ()14, [f: (s, ()]

< ki d([2:(9]%,[5:(9]%)
for all x(s), y{s) €Ey and
Fir [0, TIXEy—Ey (i=1,-, %) is  the
projection of f.
We denote k=max {k]i=1, ---, n}.

(32)

¢ ~th

Theorem 3.1. Suppose that hypotheses (H1), (H2) are
satisfied. Then the state of the (F.IS.) can be steered

from the initial value x, to any final state x!' in time
T.

Proof. The continuous function from C([0, T]: E}) to
itself defined by

(@9() =,S(Dx+ | 'SCt— s, x(5))ds
+f0'su—s) 7 = S(Dx,
- ST = 9£(s, x()d)ds.

There exist @;(i=1, -+, n)is continuous function from
C([0, T:EN to itself.
Let x, ye= ([0, T1: E}) there exist (i=1, -, n)

x;, ;€ C([0, TLEN .
Al 0x (D17, [D:v{D])

= dAISD (o)t [ SAt—9fls, 29 ds
+ 809 &7 (G- D (),
~ [ SUT= 955 x A asyas)”,

(S0 ()i [ St= (s, vi(s) s

st &7 S(D),s

— ['SUT- 9 9N DBV d

¢
([ SCt=9fi(s, (sl

[ [ SCt— 97, v() sl
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a1 [ S(T-9 & ([ S(T-9)

_|_

T ~ -1
Fils,x{sNaddsl, L [ SAT—s) &
T
(J SAT=9 15, () ds)as])
< di [1SCt= 97, (5.5 (N7,
[US= 975,941
+ L 88T [ SUT= 975, 2L dN)",

(&0 &7 ([ SAT= 975, 94N a1

IA

[ants4t=95G 2N,
[St= 95, 74NN ds

T
+f @ [SAT=9ils, 2N,
[S(T=97(s, yAN]Dds

IA

ok, [ du L (91, [y (91)ds
ek, | d L2917, Ty(91ds
< 2¢kTdp([2,(9)]%, [y(9)]%).
Therefore
H((02(D, (03)(H)
= sup g0, nd (02D, (0)(D)
— SuD co. .m0, i [ (@(D] [(0)(H])

= SUD {0, 71, a=(0,1]

| a0 )01, L (001D

< 2¢kTSup w19, 11,02 0.1]

| S Lx01, L 01
= 2ckTH(x(¥),5(D).

We take sufficiently small T,2¢k7<1.

Hence @ is a contraction mapping. By the Banach
fixed point theorem, (F.C.S.) has a unique fixed point

xe C(0, T1: ER).
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