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Abstract

The Delayed Feedback Control method (DFC) proposed by Pyragas applies an input based on the difference between the current
state of the system, which is generating chaos orbits, and the t-time delayed state, and stabilizes the chaos orbit into a target. In
DFC, the information about a position in the state space is unnecessary if the period of the unstable periodic orbit to stabilize is
known. There exists the fault that DFC cannot stabilize the unstable periodic orbit when a linearlized system around the periodic
point has an odd number property. There is the chaos control method using the prediction of the t-time future state (PDFC)
proposed by Ushio et al. as the method to compensate this fault.

Then, we propose a method such as improving the fault of the DFC. Namely, we combine DFC and PDFC with parameter W,
which indicates the balance of both methods, not to lose each advantage. Therefore, we stabilize the state into the T periodic
orbit, and ask for the ranges of W and gain K using Jury' method, and determine the quasi-optimum pair of (W, K) using a
genetic algorithm. Finally, we apply the proposed method to a discrete-time chaotic system, and show the efficiency through some

examples of numerical experiments.
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1. Introduction

In recent years, the chaos control as one of the prospering
application of chaos research is to stabilize a state into the
peculiar Unstable Periodic Orbits (UPO) embedded in the
chaos attractor. The typical methods of the chaos control are
the OGY method (1, 2, 6] and Delayed Feedback Control [3,
4, 5]. The OGY method adds a perturbation to the parameter
of the system, and Delayed Feedback Control (DFC) proposed
by Pyragas stabilizes the orbit by the external input. The DFC
method stabilizes the chaos orbit to the target UPO by the
input based on the difference between the T-time delayed state
and the current state, where T denotes a period of the
stabilized orbits. If the period of UPO stabilized is known,
this method has the advantage applied easily without the
information about the position in the state space. Moreover,
DFC has the very robust characteristic to external noise. There
exists the fault that DFC cannot stabilize UPO when a
linearlized system around the each periodic point has an odd
number of real eigenvalues greater than one (odd number
property) and has not got the theoretical guarantee related
with stability [6, 7]. In various techniques proposed until now
as the method compensating this fault, there is
Prediction-based Feedback Control (PDFC) which stabilizes
UPO using the prediction value of the T-time future state
proposed by Ushio et al. [8. 9]. However, when not receiving
restrictions of odd number property, there is no guarantee that
PDFC can obtain gain K which stabilizes the system more as
compared with DFC. Moreover, PDFC needs to calculate the
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prediction value of a state analytically against DFC
determining the input using the past state obtained already.
Therefore, a large error may arise to estimate the future state
by PDFC. In order to improve these faults of DFC and PDFC,
the method combined DFC and PDFC is described in
reference [8].

Then, in this paper, we propose a chaos control method
combined DFC and PDFC. PDFC input and DFC input in the
proposed method have a common gain and are combined with
the parameter which indicates the valance of both inputs. We
consider a discrete-time system and perform the numerical
experiments to stabilize the fixed point and the 2-periodic
orbit with the application of the proposal technique.
Furthermore, we show the validity of the proposed method by
comparing result of proposal technique with the each result of
the same experiments using PDFC and DFC.

2. DFC Method and PDFC Method

We consider the following n-th nonlinear discrete-time
system.

2(k+ 1) = Ax(k), u(k)) (1)

where x(k)eR”" is the state, wu(k)=R" is the input.
We assumed that f is differentiable and chaos generates if

u(k)=0 . The linearlized system near the periodic orbits
which has periodic coefficients is considered for stabilizing

UPO locally. We consider the following linearlized system
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near the each periodic point xpi, i =1, -, T.

x(k+1)= Aix(k) + Biui(k) 2)
where  x(k+1)=x(4) —xpi,Ai=—t%f(xpi, 0)eR™" and

__a . nxm
Bi=—_ Fxpi,)eR™™ .

2.1 DFC Method

The input of DFC expressed with Eq. (3) is based on the
difference between the T-step delayed state and the current
state.

u(k) = Kp{x(k— 1) — 2(B)} 3

where Kp& R™” is a gain matrix. The trajectory of a
state of Eq. (1) surely approaches near the T periodic orbit as
target by ergodicity of the chaotic system when w(k)=0.
Therefore, only when the trajectory approaches target UPO so
that a state may not become unstable by the input, the input
of at Eq. (3) is impressed [3]. Although it is not necessary to
search for a target orbit correctly, restriction such as the odd
number property exists in the determination of gain Kp; of the
each periodic point. Therefore, the necessary condition for Eq.
(2) to be stable is given by Eq. (4) [7].

det(In—A5>0, 1=1, -T. (4)

2.2 PDFC Method

The input of PDFC expressed with Eq. (5) which Ushio
proposed as the method of compensating the odd number
property of DFC is based on the difference between the T-step
future state and the current state.

u(k) = Kp{x(k+ 0 — x(B)} , 5)

where Kpe R™” is a gain matrix an x(k+ 1) is the
predicted value of the state with #(k) =0 as

ket 1) = 0--0x),0) = F(x(#),0) , (6)

Like DFC, only when the trajectory of the state approaches
the target, the input is impressed to the system. Eq. (2) using
PDFC is expressed with Eq. (7).

x(k+1)= Aix(k) + BiKpi( Qi— In) x(k) , (7

where '=% F(xpi,0) . At this time, if we set Fpi=

Kpi(Qi-In) in Eq. (7), gain Kpi is obtained by Eq. (8). We set
Fpi which makes 4i + BiFpi stable matrix.

Kpi=Foi(Qi—In)™" (8)

The necessary and sufficient condition to obtain gain Kpi
which makes Eq. (7) stable is that

(4i, Bi) is a controllable pair and

Qi-In is det (Qi-In)#0 i.e.., nonsingular [8, 9].

3. Proposed Method
We define the input of the proposed technique combining
DFC and PDFC by Eq. (9).
u(k) = up(k) + u(k) )

where up(k) is corresponding to PDFC input and uD(k) is
corresponding to DFC input. We determine up(k) is Eq. (10)
and uD(k) is Eq. (11).

wup(B) =K1 —Waxlk+o—xk) ,
up(k) = KWa(k— o)~ x(k) ,

1o
an

We set that gain of up(k) and gain of uD(k) are common K
€ R™". W is the weight taking the balance of up(k) and
uD(k), and takes the real value of 0 < W < 1. That is, we
use Eq. (12) which is defined as follows:

up(k) + up ifHB)<e
0 otherwise °

(B ={ (12)

where #(k) is norm of the vector based on the difference
between the T-step delayed state and the current state, and is
described by Eq. (13). €is the positive real value to be small
enough.

AR =|lx(k—») — xR , (13)

3.1 Gain K and Weight W

In order to ask for suitable K and W which guarantee the
stability of the linearlized system Eq. (2) around the T
periodic orbit, it is necessary to search for the stability of Eq.
(14) which is the extended system of Eq. (2). Since system
Eq. (2) is nth dimensions, the extended system becomes Mth
dimensions, where ~N=nX(1+1). From here, we omit
subscript i=1, +--, T except for the case where periodic pints
are discriminated.

A+ BF— VWBK--0--- WBK

Xk+1)= b 0 e a0
where
FW, K)=(1-WK(Q-In) (15)
and
— T
D =xB=[xy oo Ty

with a periodic point x4+ pn=xs and

(B =x(B—[x"(BxT(k~N1" .

Characteristic polynomial Z(z, W,K) of Eq. (14) becomes
Eq. (16).
Lz, W,K)=de| 2" 'I,— 2'(A+ F— WBK) — WBK]  (16)

A expansion of Eq. (16) is set with Eq. (17)



2z, W,K)=az"+ ay_ 12" '+ +ayz+ a , (17

where coefficients a, ,
W and K.
lirgZ(z,W,K)=00>0 as ay=1 When z=1 Eq. (16)

r=0 ,»-, N are dependent on

becomes

Z1,W,K)=dedI,—(A+F)] , (18)

Therefore, since the sign of Z(1,W,K) is able to be
decided by F(W,K) of Eq. (15), Eq. (2) does not receive
restrictions of the odd number property. Then, W and K can
be obtained using characteristic equation Z(z, W,K)=( .
However, since the dimension of an extended system Eq. (14)
becomes large if period r of the target orbit to be stabilized is
large, determining the periodic solution of the characteristic
equation becomes very hard calculation.

Then, we will judge stability by Jury' method without
determining the pole of the system and obtain the ranges of
effective gain K and weight W, which make for the linearlized
system to be stable, and determine the quasi-optimal pair of

(W, K) by the genetic algorithm (GA) from the region

W—-K .

3.2 Determination of Pair (W K)

Using pairs of (W, K) belonging to region W—K
obtained by Jury' method, gene sequence @4 of Eq. (19) is
set. Using the evaluation function of Eq. (20) the gene
manipulation to decide the degree of adaptation is repeated
only to individuals belonging to region W—K .
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Fig. 1. Controlled behavior x(k) by proposed method.
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Fig. 2. Input u(k) of proposed method.
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Fig. 3. Controlled behavior x(k) by PDFC.
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Fig. 4. Input u(k) of PDFC.
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where and are weight, and j, is the positive real value

be small enough.

4. Simulations

We examine the performance of our proposed method in
this section, and consider 1-dimensional discrete-time nonlinear
system with the dynamical equation in the following:

2(k+1) =4x(B)(1—x(k) + u(k) , 2n

where x(k)E A and uk)E A denote the system state and
input. Logistic Map of Eq. (21) has two periodic or-bits,
whose two periodic points x, , is 5:V'5/8 . This orbit will
be stabilized by our method. Inequality of W and X of the
input are solved by jury's method. Region W, - K| of Fig. 5
is the command portion of the domain-s which fills all of four
condition formulas of Eq. (22). Where parameter W, and K,
denote weight and gain of the input at periodic point x, .
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x(k) of Fig. 1 is the state behavior controlled by pro-posed
method. At that time, parameters of the input of Fig. 2 are as
w:=03711, Ki=—1.0, "»=0.5, K,=0.3711. We determined
initial value x(0)=0.8 and & =0.1. The result of experiment
using PDFC is shown in Fig. 3 for comparison with our
method. The input of PDFC at that time is shown in Fig. 4.
Two periodic orbit cannot be stabilized by the proposal
technique. Region W-K of the input parameters by proposed
method is Fig. 6. x(k) of Fig. 7 is the state behavior
controlled by proposed method. At that time, parameters of
the input of Fig. 8 are as W=0.4, K= —0.7. We determined
initial value x(0)=0.4, € =0.1. For comparison, the result of
experiment using PDFC is shown in Fig. 9, and the input at
that time is shown in Fig. 10. Similarly, the result used DFC
is shown in Fig. 11, and the input at that time is shown in
Fig. 12. From the results of the numerical experiments used
the proposed method in Logistic Map of Eq. (21), When the
starting point of control and the converging point of the input
and the state were compared, the proposed method can
stabilize a state early moreover in the input smaller than
PDFC and DFC about the fixed point. About the periodic
orbit, the proposed method can control almost like PDFC into
two periodic orbit, which is not stabilized by DFC. Although
the control result by the proposed method of DFC and PDFC,
the proposed method was able to obtain the control result
better than which of PDFC and DFC in many cases. By
applying two partial inputs adapting PDFC and DFC
simultaneously, a state did not become still unstable from the
control system which was inferior between the two original
control systems. When weight W and gain K could be
pertinently chosen in the effective range, we show by
numerical experiments that a chaotic system could be
stabilized by the proposed method.

Fig. 5. Region of weight /) and gain K.
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Fig. 6. Region of Weight W and gain K.
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Fig. 7. Controlled behavior x(k) by proposed method.
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Fig. 8. Input u(k) of proposed method.
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Fig. 9. Controlled behavior x(k) PDFC.
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Fig. 10. Input u(k) of PDFC.
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Fig.11. Controlled behavior x(k) by DFC
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Fig. 12. Input u(k) of DFC

5. Conclusion

As the method of stabilizing the state into the peculiar
UPO in chaotic system, We proposed the control technique
combined PDFC input and DFC input with the parameter
which indicates the balance of both inputs. By the numerical
experiments applied the proposed technique to the
discrete-time system comparing with the same experiment
using DFC and PDFC individually, the wvalidity of the
proposal technique was shown. Now, we are considering the
application of proposed method to unknown chaotic systems
as a future subject, in which the prediction value of a state is
not acquired.
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