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A continuous solution of the heat equation based on a fuzzy system
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Abstract

A continuous solution of the Dirichlet boundary value problem for the heat equation uc=a2uxx using a fuzzy system is

described. We first apply the Crank-Nicolson method to obtain a discrete solution at the grid points for the heat equation.

Then we find a continuous function to represent approximately the discrete values at the grid points in the form of a bicubic

spline function St x)= %c B t)B,-(x) that can in turn be represented exactly by a fuzzy system. We show that the
L

computed values at non-grid points using the bicubic spline function is much smaller than the ones obtained by linear

interpolations of the values at the grid points. We also show that the fuzzy rule table in the fuzzy system representation of

the bicubic spline function can be viewed as a gray scale image. Hence, the fuzzy rules provide a visual representation of the

functions of two variables where the contours of different levels for the function are shown in different gray scale levels
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1. Introduction

In this paper, we consider the parabolic partial differential
equation

2
ou _ 2 0°u 0

where u is a function of t and x, i.e. u=u{t,x) and u(0,x),
u(t,0), u(t,1) are given as the boundary conditions. For
simplicity, we restrict our attention to the region
[0,1]1x[0,1] and assume that the boundary conditions are
given as the Dirichlet type only.

The above heat equation is often solved by the

Crank-Nicolson method with accuracy of O(%%+ k%) where &,

and /s, are the step lengths in t and x coordinates
respectively. The Crank-Nicolson method[1,2] is a finite
difference method given by
r—d
v 2T D= U=
mi_l‘,«+2(l—r)ui',~+ TU ;+1,f (2)

The above relation (1) can be solved simultaneously using
the Dirichlet type boundary value conditions.

By applying the LU decomposition to the coefficient
matrix, however, one can compute the solution by O(%)
operations instead of O(K%) where N is the number of
subintervals.

Assume that we have the solution for some 4, and /., and

that we want to estimate the value of the function u(t,x) at a
non-grid point. Here we must employ a linear interpolation
using the nearest 4 neighboring grid points. As shown in
Table 1, the maximum error at the non-grid points is much
larger than the one at the grid points.

Table 1. Comparison of Max. Errors at Grid Points & at
Non-Grid Points

Example 1 Example 2 Example 3

a 0.1125 0.2250 0.06366

Grid Points 0.003738 0.000918 0.000116
Non-Grid Pts 0.018825 0.004785 0.004785

Table 1 shows some of the example calculation results

where the analytical solutions are of the form
_ g ; Ll ,_Va

u(t,x)=e¢ *"Sin(nmx) with h,=h, 16°9= They

show the maximum errors of the solution by the

Crank-Nicolson method at the grid points and the maximum
errors of the interpolated values at 100x100 equally spaced
points. From the table, one can see that the maximum error at
the interpolated points are about 5 times larger than those at
the grid points.

If we had a fuzzy system for the approximate solution to
the partial differential equation, then the interpolation process
would become much easier since we would then have a
continuous solution. Also, if we use the bicubic B-splines as
the input fuzzy sets, the interpolation error should be reduced.
Now, consider the following fuzzy rules;

If (tx)is B;xBj then fis f;; (3)
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where B;, B; are input fuzzy sets whose supports are

centered at ¢; and x; and f's are the solutions of (1)

which are estimates of f;. There have been some studies(3,4]
on the solution of differential equations based on fuzzy rules
like the above. In our earlier work [5], we have also shown
that a fuzzy system can be generated as an approximate
solution to partial differential equations.

Using the same notations as in [5], if we apply

S(t,x)= gC,«jB,«(t)B,-(x) to the heat equation u,= o’u
47

where B(#, Bj(x) are the cubic B-splines, then we get

A+DCpr 1t U=20C 41+ 1+ DC oy g4y
+4/{Ck']71_81ck71+(/i_l)ck+]_171 (4)
—(2A4+ D) C iy A (A=DC i1 101=0
Solving (4) implicitly, we will obtain an approximate
C,, at the grid points (#,,x,) with accuracy
O(k:+ K. O(N?)
calculations, compared with O(N) for the Crank- Nicolson
method. Thus, we try to use the solution #;; of (2) by the

solution

However, the solution requires

Crank-Nicolson method and compute the spline coefficients
Cy; in (4) using the #,/s. In the following, we describe

how this can be done.

2. A bicubic spline representation of the
solution by the Crank-Nicolson method

We will assume in the following that the solution (¢, x)
of the heat equation is a three times continuously
differentiable function. This is acceptable not only because we
deal with discrete solutions only while the analytical solution
is unknown for pratical problems, but also because the heat
equation describes a natural phenominon which must be a
smooth function. Thus, the following theorem can be used to
define a bicubic spline approximation to u(¢ x). Let B(#),
Bf{x) be the cubic B-splines defined on equally spaced
subintervals of [(,1] with length #. Then the following is
satisfied, a proof of which is found in [6].

Theorem 1. Let At x) be three times continuously
differentiable on [0, 1] x[0, 1] and let S(# x) be the bicubic

spline function gf,,B,—( HB;(x) with f,;= ft; x;), then we
have f(t,x)— S(¢, x)= O(K%) for all t,x=[0,1].

Let u,; be the solution by the Crank-Nicolson method and
consider a nongrid point (#;,x)=[0,11x{0,1]. To find an
approximate solution (#;,x,), we normally use the linear
interpolation, i.e. we take the values u,; at the four grid
points nearest to (#,x) and compute a linear combination of
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them. This should yield an O(4) error even though the

Crank-Nicolson method converges with O(#4?%).

In order to improve the interpolation error, we will try an
interpolation using the bicubic spline function. Note that if we
had a solution C,, for the system of equations (4), then we

= O(k* by Theorem 1.
Thus, we will try to compute an approximate solution C,,

would have S(f, xg) — u(ty, x;)

from the solution #%;; of (2). Note that at a grid point
(t,x;), we have
S(tpx)= 38 CoBUIBx)

3—16 {Crr1 H4C 1. Crorin

F4C 411+ 16C , F4C L 111
+ Cret, i1+ 4C k1, Crvirr ) 5)

where we have used the values of the cubic B-splines at
grid points shown in Table 2.

Table 2. Nonzero Values of S(¢,,x,) %36

j=1—1 j=1 j=1+1
i=k—1 1 4 1
i=k 4 16 4
i=k+1 1 4 1

Now, if we require S(¢,,x,) =, for all %/, then we
have
Cr1,-1H4C -1, F Cpm it
4C 411 +16C p FH4C k1t
Crerim1 T 4AC i1, Crari01= 36w
In view of Theorem 1, we simply take C o= w40,
Cinv=upn Con=ugn and Cy,=uy, for k[=0,1,
2,---,N. For interior points with £, />2, the above can be
written as

16Ch1236u k1 Ck_1'1_1—4ck_1'1"4ck 1
- Ck*1,1+1—4ck.l—‘l

— Ui, i1 Uy, U ey, 01 ®

The above can be used iteratively, for £=1,2,---, N as k
varies from 1,2,--,N. Using these C, /s, we computed the
maximum and average errors for the solution at 100x 100
points in [0,1]x[0,1] interval and some of the results are
shown in the following tables. Note that the error by the
bicubic spline functions are smaller than the ones by the
linear interpolations.
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Table 3. Compaerison of the Maximum and Average Errors that a  bicubic  spline  function of the form

__—05tq;
for wt,x)=e Sin(2mx) S(t, x)= glc,«,B,-(t)B,-(x) can be represented exactly by a
7

Linear Spline

1 fuzzy system. The cubic B-splines B,(#) and B{x) are used
h Max Average Max Average as input fuzzy sets to fuzzify the input variables ¢ and x
16 098136 008894 128193 005591 respectively. To generate the fuzzy combination rules, we first

sort the coeeficient array C,; in an ascending order so that
32 .006217 .002047 .002995 .000894

the smallest comes first and the largest becomes the last. After
64 001576 .000508 000722 000216 deleting the duplicate ones, we define traingular fuzzy sets
centered at these points and take them as output fuzzy sets
with the ordinal number of the sorted array as the fuzzy set

128 .000397 .000123 .000203 .000055

Table 4. Compaerison of the Maximum and Average Errors nugg?;; if the center area method is used as the
for u(t,x)=e 'Sin(xx) defuzzification method, then the resulting fuzzy system will
| Lincar Spline generate identical output as the spline function S(¢,x).
& Max Average Max Average Table 6. Rule table for u(¢, x) = e ~ 'Sin(xx)

16 .099098 .002929 .102803 .005591 1 12 2 27 28 2 2 12 1
32 001377 000371 000664 000174 1 10 20 25 26 25 20 10 1
64 | 000353 000093 | .000162  .000046 1 9 1823 4 23 18 9 1
128 .000108 .000021 .000148 .000025 ! 716 20 21 20 16 ! !
1 6 14 18 19 18 14 6 1

1 5 11 16 17 16 11 5 1

Table 5. Compaerison of the Maximum and Average 1 4 10 14 15 14 10 4 1
Errors for #(t,x)=e ‘Sin(zx+0.1) 1 3 8 12 13 12 3 1

1 Linear Spline 1 2 7 10 11 10 7 2 1

h Max Average Max Average
16 116732 013420 108064 002400 Table 7. Rule table for u(t, x) = ¢ ~“Sin(2mx)

32 067797 012250  .000665  .000178 Z » H¥ B 2 6 2 6 2
64 .078078 .012508 .000169 .000049 22 36 40 %0 > ! 6 2
2 33 38 322 21 8 3 9 2

128 .083334 012666 .000153 .000034 2 31 37 30 21 1 4 12 2
2 28 34 27 21 14 7 1B 22

2 2 32 2 21 16 9 17 22

2 24 29 23 21 18 13 19 22

2 26 31 24 21 17 10 18 22

2 2 2 N N N R 22 2

Table 6 and 7 are the examples of the fuzzy rules
generated by the above method. The first rows correspond to
the function 2(0,x) and the first columns correspond to
#(t,0). To reduce the number of output fuzzy sets, we
replaced some of the consecutive coefficients in the sorted
array of C;/s by the average of them when they are very
close to each other, i.e. when |C,;—C, 1<0.001.

The center of supports for the 28 output fuzzy sets in

Fig. 1. Fuzzy Rules for ¢ ‘'Sin(3mx)

3. Fuzzy system and gray scale image Table 6 are as follows;
representation of the solution 0.0000, 0.1408, 0.1547, 0.1805, 0.2001, 0.2316,
0.2594, 0.2858, 0.2976, 0.3357, 0.3709, 0.3827,
In this section, we consider a fuzzy system representation 0.4042, 0.4318, 0.4757, 0.4831, 0.5229, 0.5546,
of the solution obtained in the previous section. It is shown[7] 0.6053, 0.6205, 0.6707, 0.70712, 0.7185, 0.7777,
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0.8059, 0.8723, 0.9239, 1.0000,

and the center of supports for the 40 output fuzzy sets in
Table 7 are as follows.

-1.0352, -1.0000, -0.8749, -0.7819, -0.7502, -0.7093,
-0.6875, -0.6304, -0.6072, -0.5800, -0.5643, -0.5414,
-0.5309, -0.4960, -0.4763, -0.4381, -0.4238, -0.3893,

-0.3657, -0.0206, -0.0134, 0.0000, 0.3661, 0.3919,
04214, 04369, 04767, 0.5001, 0.5294, 0.5418,
0.5738, 0.6068, 0.6353, 0.6863, 0.7095, 0.7578,
0.7805, 0.8734, 1.0000, 1.0330

Fig. 2. Fuzzy Rules for e %Sin(5mx)

In view of Theorem 1, the set of grid points (7, 7)'s in the
rule table with the same output fuzzy set number reflects a
'near’ contour curve on the surface z= u(¢, x). Thus, if one
considers the table of output fuzzy set numbers as a digitized
gray scale image, then we have images shown in fig.1 through
fig.3.

Fig.1 shows the fuzzy rule table for the solution of the heat

equation where its analytical solution is w(f,x)=e '

Sin(37x). We divided the interval [(0,1]x[0,1] into
320x320 subintervals and computed the solution by the
Crank-Nicolson method. We then computed the bicubic spline
function by the method described in section 2. The fuzzy
rule table is then computed allowing maximum of 256 fuzzy
sets by the method described above. When the fuzzy rule
table is drawn as a gray scale image, we obtain an image
shown in fig.1. The contours in fig.1 represent points where
the function values are approximately the same.

When the same process is applied to the case of
e ¥Sin(5mx), we obtain the gray scale image shown in fig.2.
Hence, the image shown in fig.2 represents the output fuzzy
sets in the rule table of size 320x320 and the contour lines
indicate the points where the function values are
approximately the same. Note that this method can be used as
a graphic representation of arbitrary functions of two
varaibles, ie. graphic representation of surfaces. To
demonstrate this, we computed the fuzzy system representation
of the function z= fr,60)=e "Sin(4nd) so that there are
320x320 fuzzy rules with a maximum of 256 output fuzzy
sets. The resulting fuzzy rule table is drawn as fig.3.
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Fig. 3. Fuzzy Rules for e~ ’Sin(470)

There is one remark for the size of fuzzy rule table for a
general use of this gray scale representation of functions of
two variables. Note that we only need the resolution that the
contoue lines can be distinguished and as seen through above
examples, the pixel size of 320x320 is about the largest that
one would need. Note also that since we are using gray scale
images, we will not need more than 256 output fuzzy sets.

4. Conclusion

We have shown that a bicubic spline function can be
defined so that it is an approximate continuous representation
of the solution of the heat equation. The fuzzy system
representation of this function provides not only an efficient
way to compute the solution at non-grid points but also it
provides a much better approximation at those points.

We have also demonstrated that when the output fuzzy set
numbers in the fuzzy rule table of the solution are considered
as the gray scales of a digitized gray scale image, then the
image shows the contour lines very clearly. Thus, we have
shown that the fuzzy rule table of a function of two variables
can be identified as a contour image of the function. The
maximum size of the fuzzy rule table for the gray scale
representation will be about 320x320. This size is quite large
when an approximate representation of the function is the only
concern for its representation.
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